Graphene preparation and graphite exfoliation

Graphene preparation and graphite exfoliation

The synthesis of Graphene is critical to achieving its functions in practical applications. Different methods have been used to synthesis graphene, but graphite exfoliation is considered the simplest way to produce graphene and graphene oxide. In general, controlling the synthesis conditions to achieving the optimum yield, keeping the pristine structure to realize on-demand properties, minimum layers with the smallest lateral size, and minimum oxygen content are the most obstacles experienced by researchers. Each application requires a specific graphene model, graphene oxides GO, or even graphene intercalated compounds (GIC) depending on synthesis conditions and approach. This paper reviewed and summarized the most researches in this field and focusing on exfoliation methods.

___

  • 1. Dai L, Chang D, Baek J, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012; 8 (8):1130-1166. doi:10.1002/ smll.201101594
  • 2. Hirsch A. The era of carbon allotropes. Nature Materials 2010; 9 (11): 868-871. doi:10.1038/nmat2885
  • 3. Kroto H, Heath J, O’Brien S, Curl R, Smalley R. $C_{60}$: Buckminsterfullerene. Nature 1985; 318 (6042):162–163. doi:10.1038/318162a0
  • 4. Iijima S. Hellical microtubules of graphitic carbon. Nature 1991; 354 (6348): 56-58. doi:10.1038/354056a0
  • 5. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y et al. electric field effect in atomically thin carbon films. Science 2004; 306 (5696): 666-669. doi:doi:10.1126/science.1102896
  • 6. Geim A. Graphene: status and prospects. Science 2009; 324 (5934):1530-1535. doi:10.1126/science.1158877
  • 7. Geim A, Novoselov K. The rise of graphene. Nature Materials 2007; 6 (3): 183-191. doi:10.1038/nmat1849
  • 8. Heimann R, Evsyukov S, Koga Y. Carbon allotropes: A suggested classification scheme based on valence orbital hybridization. Carbon 1997; 35 (10-11): 1654-1658. doi:10.1016/S0008-6223(97)82794-7
  • 9. Marulanda J. Carbon Nanotubes Applications on Electron Devices. Rijeka, Croatia: InTech, 2011.
  • 10. O’Connell M. Carbon Nanotubes: Properties and Applications. Boca Raton: CRC Press, 2006.
  • 11. Ajayan P. Nanotubes from carbon. Chemical Reviews 1999; 99 (7): 1787-1799. doi:10.1021/cr970102g
  • 12. Dong L, Chen Q. Properties, synthesis, and characterization of graphene. Frontiers of Materials Science in China 2010; 4 (1): 45-51. doi:10.1007/s11706-010-0014-3
  • 13. Cai M, Thorpe D, Adamson D, Schniepp H. Methods of graphite exfoliation. Journal of Material Chemistry 2012; 22 (48): 24992-25002. doi:10.1039/c2jm34517j
  • 14. De Andres P, Ramírez R, Vergés J. Strong covalent bonding between two graphene layers. Physical Reviews B 2008; 77 (045403): 1-5. doi:10.1103/PhysRevB.77.045403
  • 15. Tripathi A, Saraf S, Saraf S. Carbon nanotropes: a contemporary paradigm in drug delivery. Materials (Basel) 2015; 8 (6): 3068-3100. doi:10.3390/ma8063068
  • 16. Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D et al. Superior thermal conductivity of single-layer graphene. Nano Letteters 2008; 8 (3): 902-907. doi:10.1021/nl0731872
  • 17. Dong H, Qi S. Realising the potential of graphene-based materials for biosurfaces-A future perspective. Biosurface and Biotribology 2015; 1 (4): 229-248. doi:10.1016/j.bsbt.2015.10.004
  • 18. Park S, Ruoff R. Chemical methods for the production of graphenes. Nature Nanotechnology 2009; 4 (4): 217-224. doi:10.1038/ nnano.2009.58
  • 19. Rao C, Sood A, Subrahmanyam K, Govindaraj A. Graphene: The new two-dimensional nanomaterial. Angewandte Chemie International Edition 2009; 48 (42): 7752-7777. doi:10.1002/anie.200901678
  • 20. Lee C, Wei X, Kysar J, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008; 321 (5887): 385-388. doi:10.1126/science.1157996
  • 21. Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, et al. Fine structure constant defines visual transparency of graphene. Science 2008; 320 (5881): 1308–1308. doi:10.1126/science.1156965
  • 22. Kim K, Zhao Y, Jang H, Lee S, Kim J et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009; 457 (7230): 706-710. doi:10.1038/nature07719
  • 23. Lu Z, Bao S, Gou Y, Dai L. Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2013; 3 (12): 3990-3995. doi:10.1039/c3ra22161j
  • 24. Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy & Environmental Science. 2011;4 (4):1113-1132. doi:10.1039/ c0ee00683a
  • 25. Choi D, Wang D, Viswanathan V, Bae I, Wang W. Li-ion batteries from $LiFePO_4$ cathode anatase/graphene composite anode for stationary energy storage. Electrochemistry Communications 2010; 12 (3): 378-381. doi:10.1016/j.elecom.2009.12.039
  • 26. Stankovich S, Dikin D, Dommett G, Kohlhaas K, Zimneyet E et al. Graphene-based composite materials. Nature 2006; 442 (7100): 282- 286. doi:10.1038/nature04969
  • 27. Zhang C, Liu T. A review on hybridization modification of graphene and its polymer nanocomposites. Chinese Science Bulletin 2012; 57 (23): 3010-3021. doi:10.1007/s11434-012-5321-x
  • 28. Moosa A, Kubba F, Raad M, Ramazani A. Mechanical and thermal properties of graphene nanoplates and functionalized carbon-nanotubes hybrid epoxy nanocomposites. American Journal of Materials Science 2016; 6 (5): 125-134. doi:10.5923/j.materials.20160605.02
  • 29. Moosa A, Ramazani A, Kubba F, Raad M. Synergetic effects of graphene and nonfunctionalized carbon nanotubes hybrid reinforced epoxy matrix on mechanical, thermal and wettability properties of nanocomposites. American Journal of Materials Science 2017; 7 (1): 1-11. doi:10.5923/j.materials.20170701.01
  • 30. Li X, Cai W, An J, Kim S, Nah J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009; 324 (5932): 1312-1314. doi:10.1126/science.1171245
  • 31. Reina A, Jia X, Ho J, Nezich D, Son H et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. NANO Letteters 2009; 9 (1): 30-35. doi:10.1021/nl801827v
  • 32. Berger C, Song Z, Li X, Wu X, Brown N et al. electronic confinement and coherence in patterned epitaxial graphene. Science 2006; 312 (5777): 1191-1196. doi:10.1126/science.1125925
  • 33. Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008; 3 (9): 563-568. doi:10.1038/nnano.2008.215
  • 34. Lotya M, Hernandez Y, King P, Smith R, Nicolosi V, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/ water solutions. Journal of the American Chemical Society 2009; 131 (10): 3611-3620. doi:10.1021/ja807449u
  • 35. Li D, Müller M, Gilje S, Kaner R, Wallace G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008; 3 (2): 101-105. doi:10.1038/nnano.2007.451
  • 36. Stankovich S, Dikin D, Piner R, Kohlhaas K, Kleinhammes A, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007; 45 (7): 1558-1565. doi:10.1016/j.carbon.2007.02.034
  • 37. Englert J, Dotzer C, Yang G, Schmid M, Papp C, et al. Covalent bulk functionalization of graphene. Nature Chemistry 2011; 3 (4): 279-286. doi:10.1038/nchem.1010
  • 38. Somani P, Somani S, Umeno M. Planer nano-graphenes from camphor by CVD. Chemical Physics Letters 2006; 430 (1-3): 56-59. doi:10.1016/j.cplett.2006.06.081
  • 39. Cao H, Yu Q, Colby R, Pandey D, Park C, et al. Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties. Journal of Applied Physics 2010;107(4). doi:10.1063/1.3309018
  • 40. Zhan L, Wang Y, Chang H, Stehle R, Xu J, et al. Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis. Nanoscale Research Letters 2018; 13:340 (1): 1-6. doi:10.1186/s11671-018-2740-x
  • 41. Obraztsov A, Obraztsova E, Tyurnina A, Zolotukhin A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007; 45 (10): 2017-2021. doi:10.1016/j.carbon.2007.05.028
  • 42. Forbeaux I, Themlin J, Debever J. Heteroepitaxial graphite on Interface formation through conduction-band electronic structure. Physical Review B 1998; 58 (24): 16396-16406. doi:10.1103/PhysRevB.58.16396
  • 43. Chenxing W. Growth of epitaxial graphene on SiC (0001) by thermal decomposition in argon and its etching in oxygen atmosphere. MSc, Nagoya University, Japan, 2016.
  • 44. Ruan M, Hu Y, Guo Z, Dong R, Palmer J, et al. Epitaxial graphene on silicon carbide: Introduction to structured graphene. MRS BULLETIN 2012; 37 (12): 1138-1147. doi:10.1557/mrs.2012.231
  • 45. Berger C, Song Z, Li T, Li X, Ogbazghi A, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B 2004; 108 (52): 19912-19916. doi:10.1021/jp040650f
  • 46. Krätschmer W, Lamb L, Fostiropoulos K, Huffman D. Solid $C_{60}:$ a new form of carbon. Nature 1990; 347 (6291): 354-358. doi:10.1038/347354a0
  • 47. Li N, Wang Z, Shi Z. Synthesis of Graphenes with Arc-Discharge Method. In: Mikhailov S (editor). Physics and Applications of Graphene - Experiments. Rijeka, Croatia: InTech, 2011.
  • 48. Aktas I, Golosnoy I. Production of Graphene By Arc-Discharge Synthesis. In: Proceedings of 128th The IRES International Conference; Beijing, China; 2018: pp. 36-39.
  • 49. Saito T, Matsushige K, Tanaka K. Chemical treatment and modification of multi-walled carbon nanotubes. Physica B: Condensed Matter 2002; 323 (1-4): 280-283. doi:10.1016/S0921-4526(02)00999-7
  • 50. Kosynkin D, Higginbotham A, Sinitskii A, Lomeda J, Dimiev A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009; 458 (7240): 872-876. doi:10.1038/nature07872
  • 51. Li J, Kudin K, McAllister M, Prud’homme R, Aksay I, Car R. Oxygen-driven unzipping of graphitic materials. Physical Review Letters 2006; 96 (17): 5-8. doi:10.1103/PhysRevLett.96.176101
  • 52. Ajayan P, Yakobson B. Oxygen breaks into carbon world. Nature 2006; 441 (7095): 818-819. doi:10.1038/441818a
  • 53. Brodie B. On the atomic weight of graphite. In: Proceedings of the Royal Society of London. 1859; 149: 249-259. doi:10.1098/rspl.1859.0007
  • 54. Staudenmaier L. Verfahren zur darstellung der graphitsaure. European Journal of Inorganic Chemistry1899; 32 (2):1481–1487. doi:10.1002/cber.18990320208
  • 55. Hofmann U, König E. Untersuchungen über graphitoxyd. Zeitschrift für anorganische und allgemeine Chemie 1937; 234 (4): 311-336. doi:10.1002/zaac.19372340405
  • 56. Hummers W, Offeman R. Preparation of graphitic oxide. Journal of the American Chemical Society 1958; 80 (6): 1339. doi:10.1021/ ja01539a017
  • 57. Marcano D, Kosynkin D, Berlin J, Sinitskii A, Sun Z et al. Improved synthesis of graphene oxide. ACS Nano 2010; 4 (8): 4806-4814. doi:10.1021/nn1006368
  • 58. Chen J, Yao B, Li C, Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013; 64 (1): 225-229. doi:10.1016/j.carbon.2013.07.055
  • 59. Potts J, Dreyer D, Bielawski C, Ruoff R. Graphene-based polymer nanocomposites. Polymer 2011; 52 (1): 5-25. doi:10.1016/j. polymer.2010.11.042
  • 60. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. The Journal of Physical Chemistry B 1998; 102 (23): 4477-4482. doi:10.1021/jp9731821
  • 61. Compton O, Nguyen S. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010; 6 (6): 711-723. doi:10.1002/smll.200901934
  • 62. Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials 2010; 22 (22): 2392-2415. doi:10.1002/adma.200903689
  • 63. Dreyer D, Park S, Bielawski C, Ruoff R. The chemistry of graphene oxide. Chemical Society Reviews 2010; 39 (1): 228-240. doi:10.1039/ b917103g
  • 64. Schniepp H, Li J, Mcallister M, Sai H, Herrera-Alonso M et al. Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B 2006; 110 (17): 8535-8539. doi:10.1021/jp060936f
  • 65. Pei S, Cheng H. The reduction of graphene oxide. Carbon 2012; 50 (9): 3210-3228. doi:10.1016/j.carbon.2011.11.010
  • 66. Zhang Y, Li D, Tan X, Zhang B, Ruan X et al. High quality graphene sheets from graphene oxide by hot-pressing. Carbon 2013; 54: 143- 148. doi:10.1016/j.carbon.2012.11.012
  • 67. Mcallister M, Li J, Adamson D, Schniepp H, Abdala A et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials 2007; 19 (4): 4396-4404. doi:10.1021/cm0630800
  • 68. Zhu Y, Murali S, Stoller M, Velamakanni A, Piner R, Ruoff R. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010; 48 (7): 2118-2122. doi:10.1016/j.carbon.2010.02.001
  • 69. Zhang Y, Guo L, Wei S, Hec Y, Xia H et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010; 5 (1):15-20. doi:10.1016/j.nantod.2009.12.009
  • 70. Shin H, Kim K, Benayad A, Yoon S, Park H et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials. 2009; 19 (12): 1987-1992. doi:10.1002/adfm.200900167
  • 71. Some S, Kim Y, Yoon Y, Yoo H, Lee S, et al. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Scientific Reports 2013; 3 (1929): 1-5. doi:10.1038/srep01929
  • 72. Ferna´ndez-Merino M, Guardia L, Paredes J, Villar-Rodil S, Solı´s-Ferna´ndez P, et al. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 2010; 114 (14): 6426-6432. doi:doi:10.1021/jp100603h
  • 73. Dang T, Pham V, Hur S, Kim E, Kong B, Chung J. Superior dispersion of highly reduced graphene oxide in N,N-dimethylformamide. Journal of Colloid and Interface Science 2012; 376 (1): 91-96. doi:10.1016/j.jcis.2012.03.026
  • 74. Tarcan R, Handrea-Dragan M, Todor-Boer O, Petrovai I, Farcau C et al. A new, fast and facile synthesis method for reduced graphene oxide in N,N-dimethylformamide. Synthetic Metals 2020; 269 (116576): 1-7. doi:10.1016/j.synthmet.2020.116576
  • 75. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry – A European Journal 2009; 15 (25): 6116-6120. doi:10.1002/chem.200900596
  • 76. Wang Z, Zhou X, Zhang J, Boey F, Zhang H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. Journal of Physical Chemistry C 2009; 113 (32): 14071-14075. doi:10.1021/jp906348x
  • 77. Moosa A, Jaafar J. Green reduction of graphene oxide using tea leaves extract with applications to lead ıons removal from water. Nanoscience and Nanotechnology 2017; 7 (2): 38-47. doi:10.5923/j.nn.20170702.03
  • 78. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry 2011; 13 (10): 2638-2650. doi:10.1039/c1gc15386b
  • 79. Esfandiar A, Akhavan O, Irajizad A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. Journal of Materials Chemistry 2011; 21 (29): 10907-10914. doi:10.1039/c1jm10151j
  • 80. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. Journal of Materials Chemistry 2012; 22 (27): 13773-13781. doi:10.1039/c2jm31396k
  • 81. Dreyer D, Murali S, Zhu Y, Ruoff R, Bielawski C. Reduction of Graphite Oxide Using Alcohols. Journal of Materials Chemistry 2010; 21 (10): 3443-3447. doi:doi:10.1039/c0jm02704a
  • 82. Novoselov K, Castro Neto A. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Physica Scripta 2012; T146 (014006): 1-6. doi:10.1088/0031-8949/2012/T146/014006
  • 83. Allen J, Vincent T, Richard K. Honeycomb carbon : A Review of Graphene. Chemical Reviews 2010; 110 (1): 132-145. doi:10.1021/ cr900070d
  • 84. Nicolosi V, Chhowalla M, Kanatzidis G, Strano S, Coleman N. Liquid exfoliation of layered materials. Science 2013; 340 (6139): 72-75. doi:10.1126/science.1226419
  • 85. Luckham F, Rossi S. Colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science 1999; 82 (1): 43-92. doi:10.1016/S0001-8686(99)00005-6
  • 86. May P, Khan U, O’Neill A, Coleman J. Approaching the theoretical limit for reinforcing polymers with graphene. Journal of Materials Chemistry 2012; 22 (4): 1278-1282. doi:10.1039/c1jm15467b
  • 87. Nascimento J, Serodre T, Santos J, Paulinelli L, Santos A, et al. “Molecular insights into the production of few-layer graphene in N-Cyclohexylpyrrolidone + water mixtures.” Carbon 2021; 171: 723-738. doi:10.1016/j.carbon.2020.09.034
  • 88. Ciesielski A, Samorì P. Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews 2014; 43 (1): 381-398. doi:10.1039/c3cs60217f
  • 89. Chen L, Meng Y. Liquid-phase exfoliation of fluorinated graphite to produce high-quality graphene sheets. Journal of Vacuum Science & Technology B 2019; 37 (3): 031801. doi:10.1116/1.5081961
  • 90. Zhou M, Tian T, Li X, et al. Production of graphene by liquid-phase exfoliation of intercalated graphite. Int J Electrochem Sci. 2014;9(2):810-820.
  • 91. Coleman J. Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials 2009; 19 (23): 3680-3695. doi:10.1002/ adfm.200901640
  • 92. Narayan R, Kim S. Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence 2015; 2 (1). doi:10.1186/s40580-015- 0050-x
  • 93. Shen J, He Y, Wu J, Gao C, Keyshar K, et al. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters 2015; 15 (8): 5449-5454. doi:10.1021/acs.nanolett.5b01842
  • 94. Shen J, Wu J, Wang M, Dong P, Xu J, et al. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small 2016; 12 (20): 2741-2749. doi:10.1002/smll.201503834
  • 95. Wang M, Xu X, Ge Y, Dong P, Baines R, et al. Surface Tension Components Ratio: An Efficient Parameter for Direct Liquid Phase Exfoliation. ACS Applied Materials and Interfaces 2017; 9 (10): 9168-9175. doi:10.1021/acsami.6b16578
  • 96. Cui X, Zhang C, Hao R, Hou Y. Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 2011; 3 (5): 2118- 2126. doi:10.1039/c1nr10127g
  • 97. Stankovich S, Piner D, Chen X, Wu N, Nguyen T, Ruoff S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry 2006; 16 (2): 155-158. doi:10.1039/b512799h
  • 98. Ang K, Wang S, Bao Q, Thong L, Loh P. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 2009; 3 (11): 3587-3594. doi:10.1021/nn901111s
  • 99. Park S, An J, Piner R, Jung I, Yang D, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials 2008; 20 (21): 6592-6594. doi:10.1021/cm801932u
  • 100. Wang H, Robinson J, Li X, Dai H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. Journal of the American Chemical Society 2009; 131 (c): 9910-9911. doi:10.1021/ja904251p
  • 101. Dubin S, Gilje S, Wang K, Tung V, Cha K, et al. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 2010; 4 (7): 3845-3852. doi:10.1021/nn100511a
  • 102. Fan Z, Kai W, Yan J, Wei T, Zhi L, et al. Facile synthesis of graphene nanosheets via fe reduction of exfoliated graphite oxide. ACS Nano 2011; 5 (1): 191-198. doi:10.1021/nn102339t
  • 103. Dresselhaus M, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics 1981; 51 (1): 1-186. doi:10.1080/00018738100101367
  • 104. Chung D. A review of exfoliated graphite. Journal of Materials Science 2015; 51 (1): 554-568. doi:10.1007/s10853-015-9284-6
  • 105. Ferrari A, Bonaccorso F, Fal’ko V, Novoselov K, Roche S, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015;7(11):4598-4810. doi:10.1039/c4nr01600a
  • 106. Ahmadi-Moghadam B, Taheri F. Effect of processing parameters on the structure and multi-functional performance of epoxy/GNPnanocomposites. Journal of Materials Science 2014; 49 (18): 6180-6190. doi:10.1007/s10853-014-8332-y
  • 107. Güler Ö, Güler S, Selen V, Albayrak G, Evin E. Production of graphene layer by liquid-phase exfoliation with low sonication power and sonication time from synthesized expanded graphite. Fullerenes Nanotub Carbon Nanostructures 2016; 24 (2): 123-127. doi:10.1080/1536383X.2015.1114472
  • 108. Toyoda M, Inagaki M. Sorption and recovery of heavy oils by using exfoliated graphite. Spill Science & Technology Bulletin 2003; 8 (5-6): 467-474. doi:10.1016/S1353-2561(03)00131-2
  • 109. Tryba B, Przepiórski J, Morawski W. Influence of chemically prepared $H_2SO_4$ -graphite intercalation compound (GIC) precursor on parameters of exfoliated graphite (EG) for oil sorption from water. Carbon 2003; 41 (10): 2013-2016. doi:10.1016/S0008-6223(03)00200-8
  • 110. Sorokina N, Redchitz A, Ionov S, Avdeev V. Different exfoliated graphite as a base of sealing materials. Journal of Physics and Chemistry of Solids 2006; 67 (5-6): 1202-1204. doi:10.1016/j.jpcs.2006.01.048
  • 111. Dittrich B, Wartig A, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polymer Degradation and Stability 2013; 98 (8): 1495-1505. doi:10.1016/j.polymdegradstab.2013.04.009
  • 112. Kujawski M, Pearse J, Smela E. Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 2010; 48 (9): 2409-2417. doi:10.1016/j.carbon.2010.02.040
  • 113. Li X, Zhang G, Bai X, Sun X, Wang X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology 2008; 3 (9): 538-542. doi:10.1038/nnano.2008.210
  • 114. Israelachvili J. Intermolecular and Surface Forces, Massachusetts, USA: Academic press, 2011.
  • 115. Ghatee M, Pakdel L. Surface tension regularity of non-polar, polar, and weak electrolyte liquid hydrocarbons. Fluid Phase Equilibria 2005; 234 (1-2): 101-107. doi:10.1016/j.fluid.2005.05.011
  • 116. Lyklema J. The surface tension of pure liquids Thermodynamic components and corresponding states. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999; 156 (1-3): 413-421. doi:10.1016/s0927-7757(99)00100-4
  • 117. Edwards R, Coleman K. Graphene synthesis: Relationship to applications. Nanoscale 2013; 5 (1): 38-51. doi:10.1039/c2nr32629a
  • 118. Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015; 3 (22): 11700-11715. doi:10.1039/c5ta00252d
  • 119. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari C. Production and processing of graphene and 2d crystals. Materials Today 2012; 15 (12): 564-589. doi:10.1016/S1369-7021(13)70014-2
  • 120. Liu W, Wang J, Wang X. Charging of unfunctionalized graphene in organic solvents. Nanoscale 2012; 4 (2): 425-428. doi:10.1039/ c1nr10921a
  • 121. Solomon H, Burgess B, Kennedy G, Staples E. 1-methyl-2-pyrrolidone (nmp): Reproductive and developmental toxicity study by inhalation in the rat. Drug and Chemical Toxicology 1995; 18 (4): 271-293. doi:10.3109/01480549509014324
  • 122. Kennedy G, Sherman H. Acute and subchronic roxiciy of dimethylformamide and dimethyacetamide following various routes of administration. Drug and Chemical Toxicology 1986; 9 (2): 147-170.
  • 123. Restolho J, Mata J, Saramago B. On the interfacial behavior of ionic liquids: Surface tensions and contact angles. Journal of Colloid and Interface Science 2009; 340 (1): 82-86. doi:10.1016/j.jcis.2009.08.013
  • 124. Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon S, et al. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry 2011; 21 (10): 3428-3431. doi:10.1039/c0jm02461a
  • 125. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 2003; 300 (5628): 2072-2074.
  • 126. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials 2008; 18 (10): 1518-1525. doi:10.1002/adfm.200700797
  • 127. Zhou X, Wu T, Ding K, Hu B, Hou M, Han B. Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chemical Communications 2010; 46 (3): 386-388. doi:10.1039/b914763b
  • 128. Shang N, Papakonstantinou P, Sharma S, Lubarsky G, Li M, et al. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chemical Communications 2012; 48 (13): 1877-1879. doi:10.1039/c2cc17185f
  • 129. Li X, Ge F, Li X, Zhou X, Qian J, et al. Rapid and large-scale production of carbon dots by salt-assisted electrochemical exfoliation of graphite rods. Journal of Electroanalytical Chemistry journal 2019; 851 (113390): 1-6. doi:10.1016/j.jelechem.2019.113390
  • 130. Wang S, Yi M, Shen Z. The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances 2016; 6 (61): 56705-56710. doi:10.1039/c6ra10933k
  • 131. Risley M. Surfactant-assisted exfoliation and processing of graphite and graphene. MSc, Georgia Institute of Technology, Georgeia, USA, 2013.
  • 132. Seo J, Green A, AntarisA, Hersam M. High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. The Journal of Physical Chemistry Letters 2011; 2 (9): 1004-1008. doi:10.1021/jz2003556
  • 133. Vadukumpully S, Paul J, Valiyaveettil S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009; 47 (14): 3288-3294. doi:10.1016/j.carbon.2009.07.049
  • 134. Smith R, Lotya M, Coleman J. The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics 2010; 12 (125008): 1-11. doi:10.1088/1367-2630/12/12/125008
  • 135. Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, et al. Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. Journal of Materials Chemistry 2011; 21 (24): 8727-8733. doi:10.1039/ c1jm11076d
  • 136. Alzari V, Nuvoli D, Sanna R, Scognamillo S, Piccinin M, et al. In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. Journal of Materials Chemistry 2011; 21 (41): 16544-16549. doi:10.1039/c1jm12104a
  • 137. Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, et al. The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Research Letters 2012; 7 (1): 1-7. doi:10.1186/1556-276X-7-674
  • 138. Guardia L, Fernández-Merino M, Paredes J, Solı´s-Ferna´ndez P, Villar-Rodil S, et al. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 2011; 49 (5): 1653-1662. doi:10.1016/j.carbon.2010.12.049
  • 139. Niu L, Li M, Tao X, Xie Z, Zhouet X, et al. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale 2013; 5 (16): 7202-7208. doi:10.1039/c3nr02173d
  • 140. Wang S, Yi M, Shen Z, Zhang X, Ma S. Adding ethanol can effectively enhance the graphene concentration in water-surfactant solutions. RSC Advances 2014; 4 (48): 25374-25378. doi:10.1039/c4ra03345k
  • 141. Neill A, Neill A, Khan U, Boland J, Coleman J. Graphene Dispersion and Exfoliation in Low Boiling Point Solvents Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. Journal of Physical Chemistry C 2011; 115 (13): 5422–5428. doi:10.1021/jp110942e
  • 142. Narayan R, Lim J, Jeon T, Li D, Kim S. Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon 2017; 119: 555-568. doi:10.1016/j.carbon.2017.04.071
  • 143. Hu Y, Su M, Xie X, Sun C, Kou J. Few-layer graphene oxide with high yield via efficient surfactant-assisted exfoliation of mildly-oxidized graphite. Applied Surface Science 2019; 494 (July): 1100-1108. doi:10.1016/j.apsusc.2019.07.111
  • 144. Hernandez Y, Lotya M, Rickard D, Bergin S, Coleman N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 2010; 26 (5): 3208-3213. doi:10.1021/la903188a
  • 145. Choi E, Choi W, Lee YB, Noh Y. Production of graphene by exfoliation of graphite in a volatile organic solvent. Nanotechnology 2011; 22 (36). doi:10.1088/0957-4484/22/36/365601
  • 146. Catheline A, Ortolani L, Morandi V, Melle-Franco M, Drummond C, et al. Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 2012; 8 (30): 7882-7887. doi:10.1039/c2sm25960e
  • 147. Saidin N, Zen D, Hamida B, Khan S, Ahmad H, et al. A Q-switched thulium-doped fiber laser with a graphene thin film based saturable absorber. Laser Physics 2013; 23 (11). doi:10.1088/1054-660X/23/11/115102
  • 148. Novoselov K, Fal’Ko I, Colombo L, Gellert R, Schwab G, Kim K. A roadmap for graphene. Nature 2012; 490 (7419): 192-200. doi:10.1038/ nature11458
  • 149. Liu F, Wang C, Sui X, Riaz M, Xu M, et al. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019; 1 (2): 173-199. doi:10.1002/cey2.14
  • 150. Su C, Lu A, Xu Y, Chen F, Khlobystov N, Li J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011; 5 (3): 2332-2339. doi:10.1021/nn200025p
  • 151. Morales G, Schifani P, Ellis G, Ballesteros C, Martı´nez,Ce´sar G, et al. High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon 2011; 49 (8): 2809-2816. doi:10.1016/j.carbon.2011.03.008
  • 152. Alanyalioǧlu M, Segura J, Oró-Sol J, Casañ-Pastor N. The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 2012; 50 (1): 142-152. doi:10.1016/j.carbon.2011.07.064
  • 153. Chen K, Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science 2014; 436: 41-46. doi:10.1016/j.jcis.2014.08.057
  • 154. Cooper A, Wilson N, Kinloch I, Dryfe R. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 2014; 66: 340-350. doi:10.1016/j.carbon.2013.09.009
  • 155. Sevilla M, Ferrero G, Fuertes A. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry—A European Journal 2016; 22 (48): 17351-17358. doi:10.1002/chem.201603321
  • 156. Öztürk A, Alanyalioǧlu M. Electrochemical fabrication and amperometric sensor application of graphene sheets. Superlattices and Microstructures 2016; 95:56-64. doi:10.1016/j.spmi.2016.04.039
  • 157. Chernysheva M, Rychagov A, Kornilov D, Tkachev S, Gubin S. Investigation of sulfuric acid intercalation into thermally expanded graphite in order to optimize the synthesis of electrochemical graphene oxide. Journal of Electroanalytical Chemistry 2020; 858 (113774): 1-6. doi:10.1016/j.jelechem.2019.113774
  • 158. Parvez K, Li R, Puniredd S, Hernandez Y, Hinkel F, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 2013; 7 (4): 3598-3606. doi:10.1021/nn400576v
  • 159. Parvez K, Wu Z, Li R, Liu X, Graf R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society 2014; 136 (16): 6083-6091. doi:10.1021/ja5017156 160. Wang J, Manga K, Bao Q, Loh P. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. Journal of the American Chemical Society 2011; 133 (23): 8888-8891. doi:10.1021/ja203725d
  • 161. Liu J, Yang H, Zhen S, Poh C, Chaurasia A, et al. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Advances 2013; 3 (29): 11745-11750. doi:10.1039/c3ra41366g
  • 162. Rao K, Senthilnathan J, Liu Y, Yoshimura M. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Scientific Reports 2014; 4:1-6. doi:10.1038/srep04237
  • 163. Flores-Vélez L, Domínguez O. Graphene Oxide/Multilayer-Graphene Synthesized from Electrochemically Exfoliated Graphite and Its Influence on Mechanical Behavior of Polyurethane Composites. Materials Sciences and Applications 2018; 09 (07): 565-575. doi:10.4236/ msa.2018.97041
  • 164. Lu J, Yang J, Wang J, Lim A, Wang S, Loh K. One-Pot Synthesis of Fluorescent Carbon Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009; 3 (8): 2367-2375. doi:10.1021/nn900546b
  • 165. Li-Shang L, Westwood A, Brydson R. Graphene Synthesis via Electrochemical Exfolation of Graphene Nanoplatelets in Aquesous Sulfuric Acid. In: Carbon 2016, 10-15 Jul 2016, Pennsylvania State University, Pennsylvania, United States.
  • 166. Tripathi P, Patel C, Shaz M, Srivastava N. Synthesis of High-Quality Graphene through Electrochemical Exfoliation of Graphite in Alkaline Electrolyte. 2013. http://arxiv.org/abs/1310.7371.
  • 167. Parker A, Dickinson J, Ferrer MIRROR. An Electrochemical Method for the Production of Graphite Oxide. ECS Transactions, 2013; 13 (14): 23-32. doi:10.1149/05314.0023ecst
  • 168. Berger D, Maire J. Propriétés physiques du graphite expansé recomprimé. Materials Science and Engineering 1977; 31 (C): 335-339. doi:10.1016/0025-5416(77)90054-4
  • 169. Yoshida A, Hishiyama Y, Inagaki M. Exfoliated graphite from various intercalation compounds. Carbon 1991; 29 (8): 1227-1231. doi:10.1016/0008-6223(91)90040-P
  • 170. Avdeev V, Martynov I, Nikol’skaya V, Monyakina A, Sorokina E. Investigation of the graphite-$H_2SO_4$ -gaseous oxidizer $(Cl_2, O_3, SO_3)$ system. Journal of Physics and Chemistry of Solids 1996; 57 (6-8): 837-840. doi:10.1016/0022-3697(96)00359-9
  • 171. Kang F, Leng Y, Zhang T. Electrochemical synthesis and characterization of formic acid-graphite intercalation compound. Carbon 1997; 35 (8): 1089-1096. doi:10.1016/S0008-6223(97)00065-1
  • 172. Lee B. Characteristics of exfoliated graphite prepared by intercalation of gaseous SO3 into graphite. Bulletin of the Korean Chemical Society 2002; 23 (12): 1801-1805. doi:10.5012/bkcs.2002.23.12.1801
  • 173. Viculis L, Mack J, Mayer O, Hahn H, Kaner R, Materials Chemistry 2005; 15 (9): 974-978. doi:10.1039/b413029d
  • 174. Bourlinos A, Georgakilas V, Zboril R, Steriotis A, Stubos K, Trapalis C. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Communications 2009; 149 (47-48): 2172-2176. doi:10.1016/j.ssc.2009.09.018
  • 175. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications 2009; (26): 3880-3882. doi:10.1039/b905085j
  • 176. Bourlinos B, Georgakilas V, Zboril R, Sterioti A, Stubos K. Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 2009; 5 (16): 1841-1845. doi:10.1002/smll.200900242
  • 177. Jin Z, Lomeda J, Price B, Lu W, Zhu Y, Tour J. Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets. Chemistry of Materials 2009; 21 (14): 3045-3047. doi:10.1021/cm901601g
  • 178. Gu W, Zhang W, Li X, Zhu H, Wei J, et al. Graphene sheets from worm-like exfoliated graphite. Journal of Materials Chemistry A 2009; 19 (21): 3367-3369. doi:10.1039/b904093p
  • 179. Zheng J, Di C, Liu Y, Liu H, Guo Y, et al. High quality graphene with large flakes exfoliated by oleyl amine. Chemical Communications 2010; 46 (31): 5728-5730. doi:10.1039/c0cc00954g
  • 180. Notley S. Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 2012; 28 (40): 14110-14113. doi:10.1021/la302750e
  • 181. Xiu-Yun C. Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China. International Nano Letters 2013; 3 (1): 2-6. doi:10.1186/2228-5326-3-6
  • 182. Asghar H, Hussain N, Sattar H, Brown W, Roberts L. Environmentally friendly preparation of exfoliated graphite. Journal of Industrial and Engineering Chemistry 2014; 20 (4): 1936-1941. doi:10.1016/j.jiec.2013.09.014
  • 183. Shia G, Michelmore A, Jin J, Lid L, Chen Y, et al. Advancement in Liquid Exfoliation of Graphite through Simultaneously Oxidizing and Ultrasonicating. Journal of Materials Chemistry A. 2014; 2 (47): 20382–20392. doi:10.1039/C5TA00355E
  • 184. Lotya M, King P, Khan U, De S, Coleman J. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 2010; 4 (6): 3155- 3162. doi:10.1021/nn1005304
  • 185. Khan U, O’Neill A, Lotya M, De S, Coleman N. High-concentration solvent exfoliation of graphene. Small 2010; 6 (7): 864-871. doi:10.1002/ smll.200902066
  • 186. Ciesielski A, Haar S, El Gemayel M, Yang H, Clough J, et al. Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie 2014; 126 (39): 10523-10529. doi:10.1002/ange.201402696
  • 187. He J, Song L, Yang H, Ren X, Xing L. Preparation of Sulfur-Free Exfoliated Graphite by a Two-Step Intercalation Process and Its Application for Adsorption of Oils. Journal of Chemistry 2017; 2017 (5824976): 1-8. doi:10.1155/2017/5824976
  • 188. Abed M. Preparation of graphene nanoribbons (GNRs) from twisted structure carbon nanotubes using unzipping technique. In: IOP Conference Series: Materials Science and Engineering 454; Istanbul, Turkey; 2018. doi:10.1088/1757-899X/454/1/012159
  • 189. Achee T, Sun W, Hope J, Quitzau S, Sweeney C, et al. High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports 2018; 8 (1): 1-8. doi:10.1038/s41598-018-32741-3
  • 190. Arao Y, Kuwahara R, Ohno K, Tanks J, Aida K, et al. Mass production of low-boiling point solvent- And water-soluble graphene by simple salt-assisted ball milling. Nanoscale Advances 2019; 1 (12): 4955-4964. doi:10.1039/c9na00463g
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities

İ. Işıl GÜRTEN İNAL

Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles

Asiye Aslıhan AVAN

3-Hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one and 3-hydroxy-6H-benzo[c] chromen-6-one act as on-off selective fluorescent sensors for Iron (III) under in vitro and ex vivo conditions

Rasime KALKAN, Karar SHUKUR, Mustafa GAZİ, Hayrettin Ozan GÜLCAN, Amirhossein FALLAH, Kerem TERALI

Integrated 3D-QSAR, molecular docking, and molecular dynamics simulation studies on 1,2,3-triazole based derivatives for designing new acetylcholinesterase inhibitors

Atul Kumar SINGH, Mohammed BOUACHRINE, Shashank KUMAR, Khalil EL KHATABI, Ilham AANOUZ, Reda El-MERNISSI, Mohammed Aziz AJANA, Tahar LAKHLIFI

Electrochemical investigation of the interaction of 2,4-D and double stranded DNA using pencil graphite electrodes

Gülşah ÇONGUR

Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry

Günay ÖNAL, Abdulkadir LEVENT, Yalçın ALTUNKAYNAK

Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes

Deniz İzlen ÇİFÇİ, Elçin GÜNEŞ, Yalçın GÜNEŞ, Ali Rıza DİNÇER

Synthesis and antioxidant activities of new nickel(II) complexes derived from 4-benzyloxysalicylidene-S-methyl/propyl thiosemicarbazones

Songül EĞLENCE BAKIR

Synthesis and molecular docking study of novel COVID-19 inhibitors

Zuhal GERÇEK, Deniz CEYHAN, Erol ERÇAĞ

Synthesis, characterization and catalytic properties of cationic N-heterocyclic carbene silver complexes

Deniz DEMİR ATLI