Kinetics study and influence of water-soluble polymer on the electrodeposition of iron from a citrate-chloride electrolyte on the basis of Fe(III)

The kinetics of the iron electrodeposition reaction from a plating bath containing trivalent iron ions is investigated in the present work. The electrochemical reaction is stated to proceed via the formation of relatively stable intermediates: Fe(II) ions. Only a part of the total amount of Fe(II) ions formed at the first stage of Fe(III) discharge is reduced further, producing metal iron. The effect of polyhexamethyleneguanidine hydrochloride (with an average molecular weight of 1000) on the iron deposition is ascertained. The presence of polymer additive in the iron electrolyte appreciably affects the rate of iron deposition, while the polymer additive does not influence the rate of Fe(III) ions discharge. The effect of polyhexamethyleneguanidine on the rate of iron electrodeposition is discussed in terms of the influence of the oligomer on the aggregative stability of the Fe(OH)$_{3}$ sol formed in the near-electrode layer.

Kinetics study and influence of water-soluble polymer on the electrodeposition of iron from a citrate-chloride electrolyte on the basis of Fe(III)

The kinetics of the iron electrodeposition reaction from a plating bath containing trivalent iron ions is investigated in the present work. The electrochemical reaction is stated to proceed via the formation of relatively stable intermediates: Fe(II) ions. Only a part of the total amount of Fe(II) ions formed at the first stage of Fe(III) discharge is reduced further, producing metal iron. The effect of polyhexamethyleneguanidine hydrochloride (with an average molecular weight of 1000) on the iron deposition is ascertained. The presence of polymer additive in the iron electrolyte appreciably affects the rate of iron deposition, while the polymer additive does not influence the rate of Fe(III) ions discharge. The effect of polyhexamethyleneguanidine on the rate of iron electrodeposition is discussed in terms of the influence of the oligomer on the aggregative stability of the Fe(OH)$_{3}$ sol formed in the near-electrode layer.

___

  • Izaki, M.; Miyamoto, N.; Nakae, A.; Hasegawa, T.; Watase, S.; Chigane, M.; Fujiwara, Y.; Ishikawa, M.; Enomoto, H. J. Electrochem. Soc. 2002, 149, C370–C374.
  • Bai, A.; Hu, C.-C.; Wen, T.-C. Electrochim. Acta 2003, 48, 2425–2434.
  • Lallemand, F.; Ricq, L.; Wery, M.; Ber¸cot, P.; Pagetti, J. Appl. Surf. Sci. 2004, 228, 326–333.
  • P´eter, L.; Csik, A.; Vad, K.; T´oth-K´ad´ar, E.; Pekker, ´A.; Moln´ar, G. Electrochim. Acta 2010, 55, 4734–4741.
  • Kuznetsov, V. V.; Golyanin, K. E.; Pshenichkina, T. V.; Lyakhov, B. F.; Lyashenko, S. E. Mendeleev Commun. 2013, 23, 331–333.
  • Protsenko, V. S.; Danilov, F. I. Metal Finishing 2010, 108, 28–32.
  • Danilov, F. I.; Protsenko, V. S.; Ubiikon’, A. V. Russ. J. Electrochem. 2005, 41, 1282–1289.
  • Phuong, N. V.; Kwon, S.-C.; Lee, J.-Y.; Shin, J.; Huy, B. T.; Lee Y.-I. Microchem. J. 2011, 99, 7–14.
  • Phuong, N. V.; Kwon, S. C.; Lee, J. Y.; Lee, J. H.; Lee, K. H. Surf. Coat. Technol. 2012, 206, 4349–4355.
  • Protsenko, V.; Gordiienko, V.; Butyrina, T.; Vasil’eva, E.; Danilov, F. Turk. J. Chem. 2014, 38, 50–55.
  • Danilov, F. I.; Protsenko, V. S.; Butyrina, T. E.; Vasil’eva, E. A.; Baskevich, A. S. Prot. Met. 2006, 42, 560–569.
  • Akiyama, T.; Kobayashi, S.; Ki, J.; Ohgai, T.; Fukushima, H. J. Appl. Electrochem. 2000, 30, 817–822.
  • Janssen, L. J. J; Hoogland, J. G. Electrochim. Acta 1970, 15, 1013–1023.
  • Protsenko, V. S.; Danilov, F. I. Russ. J. Electrochem. 2005, 41, 108–112.
  • Wei, D.; Ma, Q.; Guan, Y.; Hu, F.; Zheng, A.; Zhang, X.; Teng, Z.; Jiang, H. Mater. Sci. Eng. C 2009, 29, 1776–1780.
  • Protsenko, V.; Danilov, F. Electrochim. Acta 2009, 54, 5666–5672.
  • Danilov, F. I.; Protsenko, V. S. Prot. Met. 2001, 37, 223–228.
  • Vetter, K. Electrochemical Kinetics; Academic Press: New York, NY, USA, 1967.
  • Frolov, Yu. G. Course of Colloid Chemistry. Surface Phenomena and Dispersed Systems; Khimiya: Moscow, 1988 (in Russian).
  • Plieth, W. J. Solid State Electrochem. 2011, 15, 1417–1423.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Kojic acid in organic synthesis

MARYAM ZIRAK, BAGHER EFTEKHARI-SIS

Synthesis, characterization, biological studies, and molecular modeling of mixed ligand bivalent metal complexes of Schiff bases based on $N$-aminopyrimidine-2-one/2-thione

HATİCE GAMZE SOĞUKÖMEROĞULLARI, TUĞBA TAŞKIN TOK, FEYZA YILMAZ, İSMET BERBER, MEHMET SÖNMEZ

Kinetics study and influence of water-soluble polymer on the electrodeposition of iron from a citrate-chloride electrolyte on the basis of Fe(III)

VYACHESLAV PROTSENKO, FELIX DANILOV

Green synthesis of 2-amino-7-hydroxy-4-aryl-4$H$-chromene-3-carbonitriles using ZnO nanoparticles prepared with mulberry leaf extract and ZnCl$_{2}$

AKBAR MOBINIKHALEDI, ATISA YAZDANIPOUR, MAJID GHASHANG

Encapsulation of copper(II) complexes with three dentate NO2 ligands derived from 2,6-pyridinedicarboxylic acid in NaY zeolite

Somayeh GHAMARI, Massomeh GHORBANLOO, Hidenori YAHIRO

Synthesis and biological evaluation of novel fused triazolo[4,3-$a$] pyrimidinones

IKHLASS ABBAS, SOBHI GOMHA, MOHAMED ELNEAIRY, MAHMOUD ELAASSER, BAZADA MABROUK

Acid-free synthesis of S-nitrosothiols at neutral pH by shock-freezing in liquid nitrogen

DIMITRIOS TSIKAS, Dimitrios TSIKAS, ANKE BÖHMER, ARNE TRETTIN, ARSLAN ARINÇ KAYAÇELEBİ

Two new coordination polymers containing dicyanidoargentate(I) and dicyanidoaurate(I): synthesis and characterization, and a detailed in vitro investigation of their anticancer activities on some cancer cell lines

ALİ AYDIN, AHMET KARADAĞ, ŞABAN TEKİN, NESRİN KORKMAZ, ASLIHAN ÖZDEMİR

Synthesis and characterization of halogen-containing aryl amide polymer-clay nanocomposites

ALİ DELİBAŞ, MURAT ALPARSLAN

Dinitrogen reduction on a polypyrrole coated Pt electrode under high-pressure conditions: electrochemical impedance spectroscopy studies

DİDEM BALUN KAYAN, FATİH KÖLELİ