Dinitrogen reduction on a polypyrrole coated Pt electrode under high-pressure conditions: electrochemical impedance spectroscopy studies

The electrochemical impedance spectroscopy (EIS) responses of a polypyrrole (PPy)-coated platinum electrode were investigated during N$_{2}$-reduction to ammonia in aqueous medium. Kinetic parameters such as film resistance, pore resistance, and double layer capacitance were analyzed as a function of applied potential and polymer film thickness. The relation between kinetic parameters was discussed by combining electrolysis results. It was found that the optimum film thickness of polypyrrole was 0.73 $\mu $m and optimum potential for ammonia synthesis was -0.150 V under 60 bar N$_{2}$-pressure. The impedance responses under these conditions presented the lowest pore resistance value of ca. 2 $\Omega $ cm$^{2}$. The electrolyte resistance was also 2 $\Omega $ cm$^{2}$ and the film resistance was ca. 5 $\Omega $ cm$^{2}$. Tafel slopes calculated from the Tafel curve and EIS-Tafel diagram gave corresponding results: 0.121 V dec$^{-1}$ and 0.128 V dec$^{-1}$, respectively; $\alpha $-transfer coefficient of 0.49 and an exchange current density with a value of 3.17 10$^{-3}$ A cm$^{-2}$ were characteristic for H$_{ad}$ formation in acidic aqueous medium.

Dinitrogen reduction on a polypyrrole coated Pt electrode under high-pressure conditions: electrochemical impedance spectroscopy studies

The electrochemical impedance spectroscopy (EIS) responses of a polypyrrole (PPy)-coated platinum electrode were investigated during N$_{2}$-reduction to ammonia in aqueous medium. Kinetic parameters such as film resistance, pore resistance, and double layer capacitance were analyzed as a function of applied potential and polymer film thickness. The relation between kinetic parameters was discussed by combining electrolysis results. It was found that the optimum film thickness of polypyrrole was 0.73 $\mu $m and optimum potential for ammonia synthesis was -0.150 V under 60 bar N$_{2}$-pressure. The impedance responses under these conditions presented the lowest pore resistance value of ca. 2 $\Omega $ cm$^{2}$. The electrolyte resistance was also 2 $\Omega $ cm$^{2}$ and the film resistance was ca. 5 $\Omega $ cm$^{2}$. Tafel slopes calculated from the Tafel curve and EIS-Tafel diagram gave corresponding results: 0.121 V dec$^{-1}$ and 0.128 V dec$^{-1}$, respectively; $\alpha $-transfer coefficient of 0.49 and an exchange current density with a value of 3.17 10$^{-3}$ A cm$^{-2}$ were characteristic for H$_{ad}$ formation in acidic aqueous medium.

___

  • van der Ham, C. J. M.; M. Koper, T. M.; Hetterscheid, D. G. H. Chem. Soc. Rev. 2014, 43, 5183–5191.
  • Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883–1894.
  • Cao, Z.; Zhou, Z.; Wan, H.; Zhang, Q. Inter. J. Quantum Chem. 2005, 103, 344–353.
  • Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Nature 2004, 427, 527–530.
  • K¨oleli, F.; Balun Kayan, D. J. Electroanal. Chem. 2010, 638, 119–122.
  • K¨oleli, F.; R¨opke, D.; Aydın, R.; R¨opke, T. J. Appl. Electrochem. 2011, 41, 405–413.
  • Howalt, J. G.; Vegge, T. Phys. Chem. Chem. Phys. 2013, 15, 20957.
  • Strelets, V. V.; Gavrilov, A. B.; Tsarev, V. N.; Shilova, A. K.; Didenko, L. P.; Shilov, A. E. Kinet. Catal. 1986, 27, 284–290.
  • Giddey, S.; Badwal, S. P. S.; Kulkarni, A. Int. J. Hydrogen Energy 2013, 38, 14576–14594.
  • Denisov, N. T.; Efimov, O. N.; Shuvalova, N. I.; Nikolaeva, G. V.; Lisitskaya, A. P. Catal. 1990, 31, 1295–1296.
  • Valov, I.; Luerssen, B.; Mutoro, E.; Gregoratti, E. L.; De Souza, R. A.; Bredow, T.; Gunther, S.; Barinov, A.; Dudin, P.; Martin, M.; et al. Phys. Chem. Chem. Phys. 2011, 13, 3394–3410.
  • Tsuneto, A.; Kudo, A.; Sakata, T. J. Electroanal. Chem. 1994, 367, 183–188.
  • Ito, Y.; Goto, T. J. Nucl. Mater. 2005, 344, 128–135.
  • Marnellos, G.; Stoikides, M. Science 1998, 282, 98–100.
  • Kordali, V.; Kryiacou, G.; Lambrou, C. Chem. Commun. 2000, 17, 1673–1674.
  • Murakami, T.; Nohira, T. Goto, T.; Ogata, Y. H.; Ito, Y. Electrochim. Acta 2005, 50, 5423-5426.
  • Murakami, T.; Nishikiori, T.; Nohira, T.; Ito, Y. Electrochem. Solid-State Lett. 2005, 8 D19–D21.
  • K¨oleli, F.; R¨opke, T. Appl. Cata. B 2006, 62, 306–310.
  • Posp´ıˇsil, L.; Bul´ıˇckov´a, J.; Hromadova, M.; Gal, M.; Civis, S.; Cihelka, J.; Tarabek, J. Chem. Commun. 2007, 2270–2272.
  • Murakami, T.; Nohira, T.; Araki, Y.; Goto, T.; Hagiwara, R.; Ogata, Y. H. Electrochem. Solid-State Lett. 2007, 10, E4–E6.
  • Hickling, A.; Salt, F. W. Trans. Faraday Soc. 1940, 36, 1226–1235.
  • Kumar, D.; Sharma, R. C. Eur. Polym. J. 1998, 34, 1053–1060.
  • Hu, C. C.; Chu, C. H. J. Electroanal. Chem. 2001, 503, 105–116.
  • Ren, Y. J.; Zeng, C. L. J. Power Sources 2008, 182, 524–530.
  • Hitz, C.; Lasia, A. J. Electroanal. Chem. 2001, 500, 213–222.
  • Losiewicz, B.; Budniok, A.; Rowinski, E.; Lagiewka, E.; Lasia, A. Int. J. Hydrogen Energy 2004, 29, 145–157.
  • T¨uken, T.; Erbil, M.; Yazıcı, B. In Corrosion Research Trends; Wang, I. S., Ed. Nova: Hauppauge, NY, USA, 2007, pp. 1–42.
  • Yamada, Y.; Sasaki, T.; Tatsuda, N.; Weingarth, D.; Yano, K.; K¨otz, R. Electrochim. Acta 2012, 81, 138–148.
  • Hagen, G.; Dubbe, A.; Fischerauer, G.; Moos, R. Sensors and Actuators B 2006, 118, 73–77.
  • Cortina-Puig, M.; Mu˜noz-Berbel X.; Valle, M.; Mu˜noz, F. J.; Alonso-Lomillo, M. A. Anal. Chim. Acta 2007, 597, 231–237.
  • Prodromidis, M. I. Electrochim. Acta 2010, 55, 4227–4233.
  • Ciapina, E. G.; Gonzalez, E. R. J. Electroanal. Chem. 2009, 626, 130–142.
  • Damian, A.; Omanovic, S. J. Power Sources 2006, 158, 464–476.
  • K¨oleli, F.; Balun, D. Appl. Catal. A 2004, 274, 237–242.
  • Aydın R.; K¨oleli, F. Synth. Metals 2004, 144, 75–80.
  • Ate¸s, M.; Uluda˘g, N.; Arıcan, F.; Karazehir, T. Turk. J. Chem. 2015, 39, 194–205.
  • Jukic, A.; Metikoˇs-Hukovic, M. Electrochim. Acta 2003, 48, 3929–3937.
  • Moghaddam, R. B.; Pickup, P. G. Phys. Chem. Chem. Phys. 2010, 12, 4733–4741.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

One-pot and solvent-free synthesis of 3-(9-hydroxy-3-methoxy-7-aryl-6,7,9,10-tetrahydro-5$H$-benzo[$h$]thiazolo[2,3-$b$]quinazolin-9-yl)-2$H$-chromen-2-ones and their antibacterial evaluation

RAVIBABU VELPULA, JANARDHAN BANOTHU, RAJITHA GALI, YAKAIAH SARGAM, RAJITHA BAVANTULA

The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route

HİLAL DEMİR KIVRAK

Dinitrogen reduction on a polypyrrole coated Pt electrode under high-pressure conditions: electrochemical impedance spectroscopy studies

DİDEM BALUN KAYAN, FATİH KÖLELİ

Characterization of a Cu2+-selective fluorescent probe derived from rhodamine B with 1,2,4-triazole as subunit and its application in cell imaging

Na LI, Jun ZHANG, Chunwei YU, Yuxiang JI

A new and simple procedure for the trace determination of mercury using differential pulse polarography and application to a salt lake sample

GÜLER SOMER, A. CENGİZ ÇALIŞKAN, OLCAY ŞENDİL

One-pot and solvent-free synthesis of 3-(9-hydroxy-3-methoxy-7-aryl-6,7,9,10-tetrahydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-9-yl)-2H-chromen-2-ones and their antibacterial evaluation

Ravibabu VELPULA, Janardhan BANTHU, Rajitha GALI, Rajitha BAVANTULA, Yakaiah SARGAM

Encapsulation of copper(II) complexes with three dentate NO2 ligands derived from 2,6-pyridinedicarboxylic acid in NaY zeolite

Somayeh GHAMARI, Massomeh GHORBANLOO, Hidenori YAHIRO

Kinetics study and influence of water-soluble polymer on the electrodeposition of iron from a citrate-chloride electrolyte on the basis of Fe(III)

VYACHESLAV PROTSENKO, FELIX DANILOV

Preparation and characterization of polyaniline microrods synthesized by using dodecylbenzene sulfonic acid and periodic acid

RECEP TAŞ, Recep TAŞ, MUZAFFER CAN, Muzaffer CAN, SAVAŞ SÖNMEZOĞLU

Kojic acid in organic synthesis

MARYAM ZIRAK, BAGHER EFTEKHARI-SIS