Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on SiMWCNT containing anode materials

Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on SiMWCNT containing anode materials

Silicon (Si) containing materials cannot be used in commercial lithium ion batteries due to the mechanical stress problem triggered by volume expansion during cycling. The high-volume change causes mechanical instability of Si anode materials during charging/discharging, resulting fast capacity fading. It is thought that piezoelectric materials can be a solution for the volume expansion problem because of their ability to generate electric field when pressure is applied on them. For this purpose, PZT-8 and PZT-5H type piezoelectric materials were mixed with silicon and multiwalled carbon nanotube (MWCNT) to obtain anode composites and tested electrochemically versus lithium metal. The piezoelectiric effect on the electrochemical activity of these anodes is investigated by preparing the anode composite without any piezoelectric material additive (Sample #3). At the end of the 50charge/discharge cycles, the capacities reached 420 mAh/g, 300 mAh/g and 100 mAh/g for PZT-8-added, PZT-5H-added and no-PZT samples, respectively. These results showed that PZT addition improves capacity performance of Si-MWCNT anodes. Additionally, the obtained anode composites were characterized with X-ray diffraction and scanning electron microscopy.

___

  • 1. Cheng F, Liang J, Tao Z, Chen J. Functional materials for rechargeable batteries. Adv Mater 2011; 23 (15): 1695-715. doi: 10.1002/ adma.201003587
  • 2. Scrosati B, Garche J. Lithium batteries: Status, prospects and future. Journal of Power Sources 2010; 195 (9): 2419-2430. doi: 10.1016/j. jpowsour.2009.11.048
  • 3. Gaines L, Sullivan J, Burnham A, Belharouak I. Life-Cycle Analysis of Production and Recycling of Lithium Ion Batteries. Transportation Research Record 2011; 2252 (2252): 57-65. doi: 10.3141/2252-08
  • 4. Tarascon J-M, Armand M, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 171-179. doi: 10.1142/9789814317665_0024
  • 5. Wang W, Kumta PN. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. Journal of Power Sources 2007; 172 (2): 650-658. doi: 10.1016/j.jpowsour.2007.05.025
  • 6. Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012; 7 (5): 414-429. doi: 10.1016/j. nantod.2012.08.004
  • 7. Kasavajjula U, Wang CS, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007; 163 (2): 1003-1039. doi: 10.1016/j.jpowsour.2006.09.084
  • 8. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016; 1 (4): 1-16. doi: 10.1038/natrevmats.2016.13
  • 9. Wu H, Chan G, Choi JW, Ryu I, Yao Y et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature nanotechnology 2012; 7 (5): 310-315. doi: 10.1038/nnano.2012.35
  • 10. Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep 2015; 5: 10908. doi: 10.1038/srep10908
  • 11. Li XL, Gu M, Hu SY, Kennard R, Yan PF et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithiumion battery anodes. Nature Communications 2014; 5 (1): 1-7. doi: ARTN 410510.1038/ncomms5105
  • 12. Bourderau S, Brousse T, Schleich DM. Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources 1999; 81: 233-236. doi: 10.1016/S0378-7753(99)00194-9
  • 13. Obrovac MN, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid State Letters 2004; 7 (5): A93-A96. doi: 10.1149/1.1652421
  • 14. Lee BS, Yoon J, Jung C, Kim DY, Jeon SY et al. Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced LithiumIon Mobility Induced by the Local Piezoelectric Potential. Acs Nano 2016; 10 (2): 2617-2627. doi: 10.1021/acsnano.5b07674
  • 15. Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: A review. Acta Biomater 2015; 24: 12-23. doi: 10.1016/j. actbio.2015.07.010
  • 16. Yoshio M, Wang HY, Fukuda K, Umeno T, Dimov N et al. Carbon-coated Si as a lithium-ion battery anode material. Journal of the Electrochemical Society 2002; 149 (12): A1598-A1603. doi: 10.1149/1.1518988
  • 17. Huggins RA. Lithium alloy negative electrodes formed from convertible oxides. Solid State Ionics 1998; 113: 57-67. doi: 10.1016/S0167- 2738(98)00275-6
  • 18. Martos M, Morales J, Sanchez L. Lead-based systems as suitable anode materials for Li-ion batteries. Electrochimica Acta 2003; 48 (6): 615-621. doi: 10.1016/S0013-4686(02)00730-2
  • 19. Ko Y, Hwang C, Song HK. Investigation on silicon alloying kinetics during lithiation by galvanostatic impedance spectroscopy. Journal of Power Sources 2016; 315: 145-151. doi: 10.1016/j.jpowsour.2016.03.008
  • 20. Zhou XY, Tang JJ, Yang J, Zou YL, Wang SC et al. Effect of polypyrrole on improving electrochemical performance of silicon based anode materials. Electrochimica Acta 2012; 70: 296-303. doi: 10.1016/j.electacta.2012.03.098
  • 21. Paloukis F, Elmasides C, Farmakis F, Selinis P, Neophytides SG et al. Electrochemical Impedance Spectroscopy study in micrograin structured amorphous silicon anodes for lithium-ion batteries. Journal of Power Sources 2016; 331: 285-292. doi: 10.1016/j. jpowsour.2016.09.062
  • 22. Zeng ZD, Liu NA, Zeng QS, Lee SW, Mao WL et al. In situ measurement of lithiation-induced stress in silicon nanoparticles using microRaman spectroscopy. Nano Energy 2016; 22: 105-110. doi: 10.1016/j.nanoen.2016.02.005
  • 23. Zhang QM, Zhao J. Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46 (6): 1518-26. doi: 10.1109/58.808876
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Preparation of G-CuO NPs and G-ZnO NPs with mallow leaves, investigation of their antibacterial behavior and synthesis of bis(indolyl)methane compounds under solventfree microwave assisted dry milling conditions using G-CuO NPs as a catalyst

Maden SULAK

Effect of fuel choice on conductivity and morphological properties of samarium doped ceria electrolytes for IT-SOFC

Vedat SARIBOĞA, Mehmet Ali Faruk ÖKSÜZÖMER, Burcu AYGÜN

Sn(II)/PN@AC catalysts: synthesis, physical-chemical characterization, and applications

Yibo WU, Yongjun HAN, Li WANG, Qinbin LI, Wei MA, Fu XV, Fuxiang LI

Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support

Ali Şems AHSEN, Osman ÖZTÜRK, Oğuz Kaan ÖZDEMİR, Aydın HAŞİMOĞLU, İnci KARAASLAN

Advances in polymer based Friedlander quinoline synthesis

Rajendra PATIL, Jagdish CHAVAN, Shivnath PATEL, Anil BELDAR

Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on SiMWCNT containing anode materials

M. Taha DEMİRKAN, Mehbare DOĞRUSÖZ, Rezan DEMİR ÇAKAN

Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches

Çağatay DENGİZ

Acetylene hydrochlorination over tin nitrogen based catalysts: effect of nitrogen carbondots as nitrogen precursor

Fuxiang LI, Ganqing ZHAO, Yibo WU, Yongjun HAN, Songtian LI, Guoxv HE, Qingbin LI, Xuerong SUN, Peisong LIU, Shiying LUO, Liping CHENG

Optimization for esterification of saturated palm fatty acid distillate by D-optimal design response surface methodology for biolubricant production

Majd Ahmed JUMAAH, Nadia SALIH, Jumat SALIMON

DFT (density functional theory) studies on cycloisomerization of 15–membered triazatriacetylenic macrocycle

Mohamad Reza TALEI BAVIL OLYAI, Mansooreh MOVAHEDI, Nader ZABARJAD SHIRAZ, Ali EZABADI, Marjaneh SAMADIZADEH