Acetylene hydrochlorination over tin nitrogen based catalysts: effect of nitrogen carbondots as nitrogen precursor

Acetylene hydrochlorination over tin nitrogen based catalysts: effect of nitrogen carbondots as nitrogen precursor

The catalysts comprising the main active compounds of $Sn-N_x$ were synthesized using trichlorophenylstannane $((C_6 H_5 )Cl_3 Sn)$, nitrogen carbon-dots (NCDs), and activated carbon (AC) as starting materials, and the activity and stability of catalysts was evaluated in the acetylene hydrochlorination. According to the results on the physical and chemical properties of catalysts (TEM, XRD, BET, XPS and TG), it is concluded that NCDs@AC can increase $(C_6 H_5 )Cl_3$ Sn dispersity, retard the coke deposition of $(C_6 H_5 )Cl_3$ Sn/AC and lessen the loss of (C6 H5 )Cl3 Sn, thereby further promoting the stability of $(C_6 H_5 )Cl_3$ Sn/AC. Based on the characterization results of $C_2 H_2$ - TPD and HCl adsorption experiments, we proposed that the existence of Sn-Nx can effectively strengthen the reactants adsorption of catalysts. By combing the FT-IR, C2 H2 -TPD and Rideal-Eley mechanism, the catalytic mechanism, in which $C_2 H_2$ is firstly adsorbed on $(C_6 H_5 )Cl_3$ Sn to form $(C_6 H_5 )Cl_3 Sn-C_2 H_2$ and then reacted with HCl to produce vinyl chloride, is proposed.

___

  • 1. Ingham RK, Rosenberg SD, Gilman H. Organotin Compounds. Chemical Reviews 1960; 60: 459-539. doi: 10.1021/cr60207a002
  • 2. Gielen M. Tin-based antitumour drugs. Coordination Chemistry Reviews, 1996; 151: 41-51. doi: 10.1155/mbd.1994.213
  • 3. Yang P, Guo M. Interactions of organometallic anticancer agents with nucleotides and DNA. Coordination Chemistry Reviews 1999; 185: 189-211. doi: 10.1016/S0010-8545(98)00268-9
  • 4. Alama A, Tasso B, Novelli F, Sparatore F. Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discovery Today 2009; 14: 500-508. doi: 10.1016/j.drudis.2009.02.002
  • 5. Champ MA. A review of organotin regulatory strategies, pending actions, related costs and benefits. Science of the Total Environment 2000; 258: 21-71. doi: 10.1016/S0048-9697(00)00506-4
  • 6. Ayrey G, Hsu SY, Poller RC. The use of organotin compounds in the thermal stabilization of poly(vinyl chloride). VI. an assessment of the relative importance of HCl-scavenging, exchange, and addition reactions. Journal of Polymer Science Part A-Polymer Chemistry 1984; 22: 2871-2886. doi: 10.1002/pol.1984.170221112
  • 7. Song J, Zhang B, Wu T, Yang G, Han B. Organotin-oxomolybdate coordination polymer as catalyst for synthesis of unsymmetrical organic carbonates. Green Chemistry 2011; 13: 922-927. doi: 10.1039/C0GC00765J
  • 8. da Silva MA, dos Santos ASS, dos Santos TV, Meneghetti MR, Meneghetti SMP. Organotin(iv) compounds with high catalytic activities and selectivities in the glycerolysis of triacylglycerides. Catalysis Science & Technology 2017; 7: 5750-5757. doi: 10.1039/C7CY01559C
  • 9. Iwasaki F, Maki T, Onomura O, Nakashima W, Matsumura Y. ChemInform Abstract: chemo-and stereoselective monobenzoylation of 1,2-diols catalyzed by organotin compounds. Journal of Organic Chemistry 2000; 65: 996-1002. doi: 10.1002/chin.200021070
  • 10. Khattak ZAK, Younus HA, Ahmad N, Yu B, Ullah H et al. Mono-and dinuclear organotin (IV) complexes for solvent free cycloadditionof $CO_2$ to epoxides at ambient pressure. Journal of $CO_2$ Utilization 2018; 28: 313-318. doi: 10.1016/j.jcou.2018.10.014
  • 11. Wu YB, Li BW, Li FX, Xue JW, Lv ZP. Synthesis and characteristics of organotin-based catalysts for acetylene hydrochlorination. Canadian Journal of Chemistry 2018; 96: 447-452. doi: 10.1139/cjc-2017-0612
  • 12. Wu YB, Li FX, Xue JW, Lv ZP. Effect of various $g-C_3N_4$ precursors on the catalytic performance of alkylorganotin-based catalysts in acetylene hydrochlorination, Turkish Journal of Chemistry 2020; 44: 393-408. doi: 10.3906/kim-1909-64
  • 13. Schobert H. Production of acetylene and acetylene-based chemicals from coal. Chemical Reviews 2013; 114: 1743-1760. doi: 10.1021/cr400276u
  • 14. Gustin MS, Amos HM, Huang J, Matthieu BM, Keith H. Measuring and modeling mercury in the atmosphere: a critical review. Atmospheric Chemistry and Physics 2015; 15: 5697-5713. doi: 10.5194/acp-15-5697-2015
  • 15. Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish. Science 2013; 301: 1203-1203. doi: 10.1126/science.1085941
  • 16. Deng GC, Wu BX, Li TS, Liu GD, Wang LF et al. Preparation of solid phase non mercury catalyst for synthesis of vinyl chloride by acetylene method. Polyvinyl chloride 1994; 6: 5-9. http://www.cnki.com.cn/Article/CJFDTotal-JLYA199406001.htm
  • 17. Gao SL, Sun X, Lv ZL, Qin YC, Zhang XT et al. The application of Sn-Bi-Co@AC catalysts for acetylene hydrochlorination. Journal of Petrochemical Universities, 2016; 29: 1-5. doi: 10.3969/j.issn.1006-396X.2016.02.001
  • 18. Zhag L, Jiang H, Wang H, Dong SW, Ding LW et al. Preparation and application of non-mercury catalysts for acetylene hydrochlorination. Journal of Petrochemical Universities 2013; 26: 6-11. doi: 10.3969/j.issn.1006-396X.2013.06.002
  • 19. Xiong Q, Wu GW, Ling S, Xiong Z, Hu ZP et al. Preparation and optimization of mercury-free catalyst for synthesis of vinyl chloride from acetylene. Modern Chemical Industry 2007; 37: 66-69. doi:10.16606/j.cnki.issn0253-4320.2017.11.015
  • 20. Guo YY, Liu Y, Hu RS, Gao GJ, Sun HJ. Preparation and optimization of SnCl2 -ZnCl2 /C mercury-free catalyst for acetylene hydrochlorination. Chinese Journal of Applied Chemistry 2014; 31: 624-626. doi: 10.3724/SP.J.1095.2014.30337
  • 21. Wu YB, Li FX, Lv ZP, Xue JW. Carbon-supported binary Li-Sn catalyst for acetylene hydrochlorination. Journal of Saudi Chemical Society 2019; 19: 002. doi: 10.1016/j.jscs.2019.08.002
  • 22. Wu YB, Li FX, Xue JW, Lv ZP. Sn-imidazolates supported on boron and nitrogen-doped activated carbon as novel catalysts for acetylene hydrochlorination. Chemical Engineering Communications 2019; 207: 1203-1215. doi: 10.1080/00986445.2019.1641700
  • 23. Li X, Wang Y, Kang L, Zhu M, Dai B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. Journal of Catalysts 2014; 311: 288-294. doi: 10.1016/j.jcat.2013.12.006
  • 24. Lin R, Kaiser SK, Hauert R, Ramírez JP. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catalysis 2018; 8: 1114-1121. doi: 10.1021/acscatal.7b03031
  • 25. Li X, Zhu M, Dai B. $AuCl_3$ on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts. Applied Catalysis, B: Environmental 2013; 142: 234-240. doi: 10.1016/j.apcatb.2013.05.031
  • 26. Zhang R, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a“turn-off ”fluorescent probe for detection of $Hg^{2+}$ ions. Biosensors & Bioelectronics 2014; 55: 83-90. doi: 10.1016/j.bios.2013.11.074
  • 27. Yang Z, Xu M, Liu Y, He F, Gao F et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 2014; 6: 1890-1895. doi: 10.1039/C3NR05380F
  • 28. Dong Y, Pang H, Yang HB, Guo CX, Shao JW et al. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie International Edition 2013; 52: 7800-7804. doi:10.1002/anie.201301114
  • 29. Choi Y, Kang B, Lee J, Kim S, Kim GT et al. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatomdoped carbon nanodots. Chemistry of Materials 2016; 28: 6840-6847. doi: 10.1021/acs.chemmater.6b01710
  • 30. Lin C, Zhuang Y, Li W, Zhou TL et al. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019; 11: 6584-6590. doi: 10.1039/C8NR09672D
  • 31. Yue YX, Wang BL, Wang SS, Jin CX, Lu JY et al. Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination. Chemical Communication 2020; 56: 5174-5177. doi: 10.1039/C9CC09701E
  • 32. Tian Z, Tian P, Zhou X, Zhou G, Mei S et al. Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication. Nanoscale 2019; 11: 3489-3494. doi: 10.1039/C9NR00224C
  • 33. Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte Chemie International Edition 2012; 51: 12215-12218. doi: 10.1002/anie.201206791
  • 34. Wang F, Chen P, Feng Y, Xie Z, Liu Y et al. Facile synthesis of N-doped carbon dots/$g-C_3N_4$ photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Applied Catalysis B: Environmental 2017; 207: 103-113. doi: 10.1016/j. apcatb.2017.02.024
  • 35. Zhu S, Meng Q, Wang L, Zhang J, Song Y et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie International Edition 2013; 52: 3953-3957. doi: 10.1002/anie.201300519
  • 36. Fang S, Xia Y, Lv K, Li Q, Sun J et al. Effect of carbon-dots modification on the structure and photocatalytic activity of $g-C_3N_4$ . Applied Catalysis B: Environmental 2015; 185: 225-232. doi: 10.1016/j.apcatb.2015.12.025
  • 37. Gao Z, Lin Z, Chen X, Zhang H, Huang Z, A fluorescent probe based on N-doped carbon dots for highly sensitive detection of Hg2+ in aqueous solutions. Analytical Methods 2016; 8: 2297-2304. doi :10.1039/C5AY03088A
  • 38. Qian H, Han H, Zhang F, Guo B, Yue Y et al. Non-catalytic CVD preparation of carbon spheres with a specific size. Carbon 2004; 42: 761- 766. doi: 10.1016/j.carbon.2004.01.004
  • 39. Zhang H, Li W, Jin Y, Sheng W, Hu M et al. Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental 2016; 189: 56-64. doi: 10.1016/j.apcatb.2016.02.030
  • 40. Moulder JF, Stickle WF, Sobol PE, Bomben KE. Photochemical reduction of carbonate to formaldehyde on $TiO_2$ powder. Chemical Physics Letters 1995; 220: 7-10. doi: 10.1016/0009-2614(83)80259-0
  • 41. Renard L, Babot O, Saadaoui H. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors. Nanoscale 2012; 4: 6806-6813. doi: 10.1039/c2nr31883k
  • 42. Larciprete R, Borsella E, De Padova P, Faglia G, Sberveglieri G. Organotin films deposited by laser-induced CVD as active layers in chemical gas sensors. Thin Solid Films 1998; 323: 291-295. doi: 10.1016/s0040-6090(97)01201-7
  • 43. De Padova P, Fanfoni M, Larciprete R, Mangiantini M, Priori S et al. A synchrotron radiation photoemission study of the oxidation of tin. Surface Science 1994; 313: 379-391. doi: 10.1016/0039-6028(94)90058-2
  • 44. Lewin E, Patscheider J. Structure and properties of sputter-deposited Al-Sn-N thin films. Journal of Alloys and Compounds 2016; 682: 42-51. doi: 10.1016/J.JALLCOM.2016.04.278
  • 45. Inoue Y, Nomiya M, Takai O, Inoue Y, Nomiya M et al. Physical properties of reactive sputtered tin-nitride thin films. Vacuum 1998; 51: 673-676. doi: 10.1021/j100214a022
  • 46. Vinke P, Eijk MVD, Verbree M, Voskamp AF, van Bekkum H. Modification of the surfaces of a gas-activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia. Carbon 1994; 32: 675-686. doi: 10.1016/0008-6223(94)90089-2
  • 47. Dai B, Chen K, Wang Y, Kang LH, Zhu MY. Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination. ACS Catslysis 2015; 5: 2541-2547. doi: 10.1021/acscatal.5b00199
  • 48. Shen Z, Zhao H, Liu Y, Kan ZY, Xing P et al. Mercury-free nitrogen-doped activated carbon catalyst: an efficient catalyst for the catalytic coupling reaction of acetylene and ethylene dichloride to synthesize the vinyl chloride monomer. Reaction Chemistry & Engineering 2018; 3: 34-40. doi: 10.1039/C7RE00201G
  • 49. Nkosi B, Adams MD, Coville NJ, Hutchings GJ. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. Journal of Catalysis 1991; 128: 378-386. doi: 10.1016/0021-9517(91)90296-G
  • 50. Bremer H, Lieske H. Kinetics of the hydrochlorination of acetylene on $HgCl_2$ /active carbon catalysts. Applied Catalysis 1985; 18: 191. doi: 10.1016/S0166-9834(00)80308-5
  • 51. Qi H, Li Q, Mo ZS, Zhang XT, Song LJ. $MCl_2$ (M=Hg, Cd, Zn, Mn) catalysed hydrochlorination of acetylene-a density functional theory study. Molecular Simulation 2017; 43: 28-33. doi: 10.1080/08927022.2016.1227076
  • 52. Kowalewska E, Błaz̊ejowski J, Thermochemical properties of $H_2 SnCl_6$ complexes. Part I. Thermal behaviour of primary n-alkylammonium hexachlorostannates. Thermochimica Acta 1986; 101: 271-289. doi: 10.1016/0040-6031(86)80059-4
  • 53. Andrews L, Johnson GL, Kelsall BJ. Fourier transform infrared matrix infrared spectra of the $C_2H_2-HX and C_2$ HX-HX hydrogen-bonded complex. The Journal of Physical Chemistry 1982; 86: 3374-3380. doi: 10.1021/j100214a022
  • 54. Huber S, Knözinger H. Adsorption of CH-acids on magnesia: An FTIR-spectroscopic study. Journal of Molecular Catalysis A: Chemical 1999; 141: 117-127. doi: 10.1016/S1381-1169(98)00255-6
  • 55. Hu J, Yang Q, Yang L, Zhang Z, Su B et al. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: active non-mercury catalysts for hydrochlorination of acetylene, ACS Catalysis 2015; 5: 6724-6731. doi: 10.1021/acscatal.5b01690
  • 56. Shang S, Zhao W, Wang Y, Li X, Zhang J et al. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catalysis 2017; 7: 510-3520. doi: 10.1021/acscatal.7b00057
  • 57. Ren Y, Wu B, Wang F, Li H, Lv G et al. Chlorocuprate(i) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene. Catalysis Science & Technology 2019; 9: 2868-2878. doi: 10.1039/C9CY00401G
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

N doping of $TiO_2$ nanocrystal for efficient photodegradation of organic pollutants under ultraviolet and visible light irradiation

Qianrui LV, Xiaoyou YU

One‒pot green synthesized protein‒based silver nanocluster as prooxidant biosensor

Esin AKYÜZ

A survey on surface morphology control of cross-linked poly(N-vinylpyrrolidone) polymer particle via inverse suspension polymerization

Sedat ÇETİN, Uğur SOYKAN

Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts

Gülin Selda POZAN SOYLU, Esra Yeliz ALTUN, Z. Tuba ŞİŞMANOĞLU

Effect of fuel choice on conductivity and morphological properties of samarium doped ceria electrolytes for IT-SOFC

Vedat SARIBOĞA, Mehmet Ali Faruk ÖKSÜZÖMER, Burcu AYGÜN

Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on SiMWCNT containing anode materials

M. Taha DEMİRKAN, Mehbare DOĞRUSÖZ, Rezan DEMİR ÇAKAN

GC-MS analyses and bioactivities of essential oil obtained from the roots of Chrysopogon zizanioides (L.) Roberty cultivated in Giresun, Turkey

Bengü ERTAN, Derya EFE, Mehmet Emin ŞEKER, Mustafa KARAKÖSE, Ayça AKTAŞ KARAÇELİK

Antiinfective properties of ursolic acid-loaded chitosan nanoparticles against Staphylococcus aureus

Fatemeh GHASEMZADEH, Ghasem D. NAJAFPOUR, Maedeh MOHAMMADI

Cytotoxic and apoptotic effects of Hypericum androsaemum on prostate adenocarcinoma (PC-3) and hepatocellular carcinoma (Hep G2) cell lines with identification of secondary metabolites by LC-HRMS

Mehmet BOĞA, Gül ÖZHAN, Ercan ÇINAR, Ahmet Ceyhan GÖREN, Tuğçe BORAN, Ezgi ERSOY, Esra EROĞLU ÖZKAN, Nurdan YAZICI BEKTAŞ

Synthesis of imidazo-1,4-oxazinone derivatives and investigation of reaction mechanism

Volkan TAŞDEMİR