Advances in polymer based Friedlander quinoline synthesis

Advances in polymer based Friedlander quinoline synthesis

Nitrogen containing heterocyclic compounds has acquired their remarkable and distinct place in the wide area of organic synthesis due to the broad range of applications. Among them, quinoline motifs have attracted researchers in the synthetic chemistry because of its presence in the large number of pharmacologically active compounds. Different methods for synthesis of quinoline derivatives are reported, among them the Friedlander synthesis have provided comparatively more efficient approach. Many of the reported conventional Friedlander methodologies have some problems such as difficult product isolation procedures, poor yields and use of expensive catalysts, etc. Recently, polymer or solid supported synthetic approaches have attracted the attention of researchers because of their easy execution, greater selectivity, increased product yields, simple work-up procedures, recoverability and reusability of the catalysts. In consideration with the advantages of polymer supported synthetic strategies, the proposed review covers the role of polymers in the Friedlander synthesis; which may use polymers of organic, inorganic or hybrid in nature and of nanolevel as well.

___

  • 1. Kumar S, Bawa S, Gupta H. Biological activities of quinoline derivatives. Mini-Reviews in Medicinal Chemistry 2009; 9 (14): 1648.
  • 2. Ökten S, Cakmak O, Erenler R, Şahin ÖY, Tekin Ş. Simple and convenient preparation of novel 6, 8-disubstituted quinoline derivatives and their promising anticancer activities Turkish Journal of Chemistry. 2013; 37 (6): 896-908.
  • 3. Zablotskaya A, Segal I, Geronikaki A, Shestakova I, Nikolajeva V et al. N-heterocyclic choline analogues based on 1, 2, 3, 4-tetrahydro(iso) quinoline scaffold with anticancer and anti-infective dual action. Pharmacological Reports 2017; 69 (3): 575-581.
  • 4. Sun N, Du R-L, Zheng Y-Y, Huang B-H, Guo Q et al. Antibacterial activity of N-methylbenzofuro[3,2-b] quinoline and N-methylbenzoindolo[3,2-b]-quinoline derivatives and study of their mode of action. European Journal of Medicinal Chemistry 2017; 135: 1-11.
  • 5. Aydın A, Ökten S, Erkan S, Bulut M, Özcan E et al. In–vitro anticancer and antibacterial activities of brominated indeno[1,2-b]quinoline amines supported with molecular docking and mcdm. ChemistrySelect 2021; 6 (13): 3286-3295.
  • 6. Okten S, Aydin A, Kocyigit UM, Cakmak O, Erkan S et al. Quinoline-based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Archiv der Pharmazie 2020; 353 (9): 2000086.
  • 7. Köprülü TK, Ökten S, Tekin Ş, Çakmak O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. Journal of Biochemical and Molecular Toxicology 2019; 33 (3): e22260.
  • 8. Fouda AM. Halogenated 2-amino-4H-pyrano[3,2-h]quinoline-3-carbonitriles as antitumor agents and structure–activity relationships of the 4-, 6-, and 9-positions. Medicinal Chemistry Research 2017; 26 (2): 302-313.
  • 9. Nayyar A, Monga V, Malde A, Coutinho E, Jain R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2- substituted quinolines. Bioorganic & Medicinal Chemistry 2007; 15 (2): 626-640.
  • 10. Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biological and Pharmaceutical Bulletin 2004; 27 (10): 1683-1687.
  • 11. Luchi RJ, Conn Jr HL, Helwig Jr J. Cardiovascular effects of a quinidine-related compound, 4-hydroxymethyl-6-methoxy quinoline. The American Journal of Cardiology 1962; 10 (2): 252-260.
  • 12. García E, Coa JC, Otero E, Carda M, Vélez ID, et al. Synthesis and antiprotozoal activity of furanchalcone–quinoline, furanchalcone– chromone and furanchalcone–imidazole hybrids. Medicinal Chemistry Research 2018; 27 (2): 497-511.
  • 13. Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in aspergillus fumigatus. Journal of Antimicrobial Chemotherapy 2017; 72 (8): 2263- 2272.
  • 14. Murugavel S, Stephen CJP, Subashini R, AnanthaKrishnan D. Synthesis, structural elucidation, antioxidant, CT-DNA binding and molecular docking studies of novel chloroquinoline derivatives: Promising antioxidant and anti-diabetic agents. Journal of Photochemistry and Photobiology B: Biology 2017; 173: 216-230.
  • 15. Zhong F, Geng G, Chen B, Pan T, Li Q et al. Identification of benzenesulfonamide quinoline derivatives as potent HIV-1 replication inhibitors targeting Rev protein. Organic & Biomolecular Chemistry 2015; 13 (6): 1792-1799.
  • 16. Cakmak O, Ökten S, Alımlı D, Ersanlı CC, Taslimi P, et al. Novel piperazine and morpholine substituted quinolines: Selective synthesis through activation of 3, 6, 8-tribromoquinoline, characterization and their some metabolic enzymes inhibition potentials. Journal of Molecular Structure 2020; 1220: 128666.
  • 17. Skraup VZH, Vorläufige M. Eine synthese des chinolins. Bull soc chira. 1880; 28: 62.
  • 18. Combes A. Quinoline synthesis. Bulletin de la Société Chimique de France 1888; 49: 89-94.
  • 19. Conrad M, Limpach L. Synthesen von chinolinderivaten mittelst acetessigester. Berichte der deutschen chemischen Gesellschaft 1887; 20 (1): 944-948.
  • 20. Povarov L, Grigos V, Mikhailov B. Reaction of benzylideneaniline with some unsaturated compounds. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science 1963; 12 (11): 1878-1880.
  • 21. Döbner O. Ueber α-alkylcinchoninsäuren und α-alkylchinoline. Justus Liebigs Annalen der Chemie 1887; 242 (3): 265-289.
  • 22. Doebner O, v. Miller W. Ueber eine dem chinolin homologe base. Berichte der deutschen chemischen Gesellschaft 1881; 14 (2): 2812- 2817.
  • 23. Gould RG, Jacobs WA. The synthesis of certain substituted quinolines and 5, 6-benzoquinolines. Journal of the American Chemical Society 1939; 61 (10): 2890-2895.
  • 24. C. E, P. R. On the action of acetone on aniline. Reports of the German Chemical Society 1885; 18 (2): 3296-3297.
  • 25. L. K. Synthetische versuche mit dem acetessigester. Justus Liebigs Annalen der Chemie 1887; 238: 137-219.
  • 26. Pfitzinger W. Chinolinderivate aus isatinsäure. Journal für Praktische Chemie 1888; 38 (1): 582-584.
  • 27. Friedlander P. About o-amidobenzaldehyde. Reports of the German Chemical Society 1882; 15 (2): 2572-2575
  • 28. Niementowski S, Orzechowski B. Synthesen der chinolinderivate aus anthranilsäure und aldehyden. Berichte der deutschen chemischen Gesellschaft 1895; 28 (3): 2809-2822.
  • 29. Meth-Cohn O, Narine B. A versatile new synthesis of quinolines, thienopyridines and related fused pyridines. Tetrahedron Letters 1978; 19 (23): 2045-2048.
  • 30. Camps R. Synthese von α-und γ-oxychinolinen. Berichte der deutschen chemischen Gesellschaft 1899; 32 (3): 3228-3234.
  • 31. Manske R. The chemistry of quinolines. Chemical Reviews 1942; 30 (1): 113-144.
  • 32. Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras MdC, Soriano E. Recent advances in the Friedlander reaction. Chemical Reviews 2009; 109 (6): 2652-2671.
  • 33. Ekiz M, Tutar A, Ökten S, Bütün B, Koçyiğit ÜM et al. Synthesis, characterization, and SAR of arylated indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors. Archiv der Pharmazie 2018; 351 (9): 1800167.
  • 34. Ekiz M, Tutar A, Íkten S. Convenient synthesis of disubstituted tacrine derivatives via electrophilic and copper induced reactions. Tetrahedron 2016; 72 (35): 5323-5330.
  • 35. Çakmak O, Ökten S. Key compounds in synthesis of quinoline derivatives: Synthesis of bromo, nitro and methoxy quinolines. Turkish Journal of Science and Health 2021; 2 (1): 124-132.
  • 36. Patil R, Chavan J, Beldar A. Review: Biginelli reactions-reagent support based approaches. World Journal of Pharmacy and Pharmaceutical Sciences 2016; 5: 419-432.
  • 37. Patil RV, Chavan JU, Beldar AG. Synthesis of aminothiazoles: Polymer-supported approaches. RSC Advances 2017; 7: 23765-23778.
  • 38. Patil RV, Chavan JU, Dalal DS, Shinde VS, Beldar AG. Biginelli reaction: Polymer supported catalytic approaches. ACS Combinatorial Science 2019; 21: 105-148.
  • 39. Patteux C, Levacher V, Dupas G. A novel traceless solid-phase Friedlander synthesis. Organic Letters 2003; 5 (17): 3061-3063.
  • 40. Zhang X-L, Hu Q-S, Sheng S-R, Xiao C, Caia M-Z. Microwave-assisted Friedländer synthesis of polysubstituted quinolines based on poly(ethylene glycol) bound acetoacetate. Journal of the Chinese Chemical Society 2011; 58: 18-23.
  • 41. Yamaguchi K, Noda T, Tomizawa T, Kanai E, Hioki H. Solid-phase Friedländer synthesis using an alkoxyamine linker. European Journal of Organic Chemistry 2015; 2015 (22): 4990-4995.
  • 42. Ghorbani-Vaghei R, Akbari-Dadamahaleh S. Poly(N-bromo-N-ethylbenzene-1,3-disulfonamide) and N,N,N′,N′-tetrabromobenzene1,3-disulfonamide as efficient reagents for synthesis of quinolines. Tetrahedron Letters 2009; 50 (9): 1055-1058.
  • 43. Kiasat AR, Mouradzadegun A, Saghanezhad SJ. Poly(4-vinylpyridinium butane sulfonic acid) hydrogen sulfate: An efficient, heterogeneous poly(ionic liquid), solid acid catalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols and substituted quinolines under solventfree conditions. Chinese Journal of Catalysis 2013; 34 (10): 1861-1868.
  • 44. Fang L, Yu J, Liu Y, Wang A, Wang L. Homogeneous catalysis, heterogeneous recycling: A new family of branched molecules with hydrocarbon or fluorocarbon chains for the Friedländer synthesis of quinoline under solvent-free conditions. Tetrahedron 2013; 69 (51): 11004-11009.
  • 45. Maleki B, Seresht ER, Ebrahimi Z. Friedlander synthesis of quinolines promoted by polymer-bound sulfonic acid. Organic Preparations and Procedures International 2015; 47 (2): 149-160.
  • 46. Cho CS, Ren WX, Shim SC. Synthesis of quinolines via Pd/C-catalyzed cyclization of 2-aminobenzyl alcohol with ketones. Bulletin of the Korean Chemical Society 2005; 26 (8): 1286-1288.
  • 47. Shirini F, Akbari-Dadamahaleh S, Mohammad-Khah A. Rice husk ash supported $FeCl_2·2H_2O:$ A mild and highly efficient heterogeneous catalyst for the synthesis of polysubstituted quinolines by Friedländer heteroannulation. Chinese Journal of Catalysis 2013; 34 (12): 2200- 2208.
  • 48. Shirini F, Seddighi M, Mamaghani M. Sulfonated rice husk ash (RHA-SO3 H) as an efficient and recyclable catalyst for the Friedlander synthesis of quinolines. Research on Chemical Intermediates 2015; 41 (11): 8673-8680.
  • 49. Yamada S, Chibata I. Application of ion exchangers in organic reactions: Application to the Friedlander quinoline synthesis. Pharmaceutical Bulletin 1955; 3 (1): 21-24.
  • 50. Das B, Damodar K, Chowdhury N, Kumar RA. Application of heterogeneous solid acid catalysts for Friedlander synthesis of quinolines. Journal of Molecular Catalysis A: Chemical 2007; 274 (1-2): 148-152.
  • 51. Hou RS, Wu JL, Cheng HT, Xie YT, Chen LC. Amberlyst-15-catalyzed novel synthesis of quinoline derivatives in ionic liquid. Journal of the Chinese Chemical Society 2008; 55: 915-918.
  • 52. Chen L-C, Wang H-M, Hou R-S, Du H-D, Kang I-J. Dowex-50W promoted Friedländer synthesis of substituted quinolines under solventfree conditions. Heterocycles 2011; 83 (2): 331-338.
  • 53. Zhang X-L, Wang Q-Y, Sheng S-R, Wang Q, Liu X-L. Efficient Friedländer synthesis of quinoline derivatives from 2-aminoarylketones and carbonyl compounds mediated by recyclable PEG-supported sulfonic acid. Synthetic Communications 2009; 39 (18): 3293-3304.
  • 54. Hasaninejad A, Zare A, Shekouhy M, Ameri-Rad J. Sulfuric acid-modified PEG-6000 $(PEG-OSO_3 H):$ An efficient, bio-degradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted quinolines under microwave irradiation. Green Chemistry 2011; 13 (4): 958–964.
  • 55. Nasseri MA, Alavi SA, Zakerinasab B. PEG-SO3 H as a catalyst in aqueous media: A simple, proficient and green approach for the synthesis of quinoline derivatives. Journal of Chemical Sciences 2013; 125 (1): 109–116.
  • 56. Zakerinasab B, Mohammad Ali Nasseri FK. Efficient procedure for the synthesis of quinoline derivatives by NbCl5 .PEG and NbCl5 in glycerol as green solvent. Iranian Chemical Communication 2015; 3: 335-347.
  • 57. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews 1998; 98 (5): 1743-1754.
  • 58. Madhav B, Murthy SN, Rao KR, Nageswar YVD. An improved protocol for the synthesis of quinoline-2,3-dicarboxylates under neutral conditions via biomimetic approach. Helvetica Chimica Acta 2010; 93: 257-260.
  • 59. Desai UV, Mitragotri SD, Thopate TS, Pore DM, Wadgaonkar PP. A highly efficient synthesis of trisubstituted quinolines using sodium hydrogensulfate on silica gel as a reusable catalyst. ARKIVOC 2006; xv: 198-204.
  • 60. Shaabani A, Soleimani E, Badri Z. Silica sulfuric acid as an inexpensive and recyclable solid acid catalyzed efficient synthesis of quinolines. Monatshefte für Chemie - Chemical Monthly 2005; 137 (2): 181-184.
  • 61. Khalilzadeh MA, Hosseini A, Tajbakhsh M. Synthesis of tacrine derivatives under solventless conditions. Journal of Heterocyclic Chemistry 2007; 44 (3): 535-538.
  • 62. Narasimhulu M, Reddy TS, Mahesh KC, Prabhakar P, Rao CB et al. Silica supported perchloric acid: A mild and highly efficient heterogeneous catalyst for the synthesis of poly-substituted quinolines via Friedländer hetero-annulation. Journal of Molecular Catalysis A: Chemical 2007; 266 (1-2): 114-117.
  • 63. Zolfigol MA, Salehi P, Ghaderi A, Shiri M. Iodine-catalyzed Friedlander quinoline synthesis under solvent-free conditions. Journal of the Chinese Chemical Society 2007; 54: 267-271.
  • 64. Dabiri M, Azimi SC, Bazgir A. An efficient and rapid approach to quinolines via friedländer synthesis catalyzed by silica gel supported sodium hydrogen sulfate under solvent-free conditions. Monatshefte für Chemie - Chemical Monthly 2007; 138 (7): 659-661.
  • 65. Das B, Krishnaiah M, Laxminarayana K, Nandankumar D. Silica supported phosphomolybdic acid: An efficient heterogeneous catalyst for Friedlander synthesis of quinolines. Chemical and Pharmaceutical Bulletin (Tokyo) 2008; 56 (7): 1049-1051.
  • 66. Mohammadi AA, Azizian J, Hadadzahmatkesh A, Asghariganjeh MR. Green protocol for the Friedländer synthesis: $KAl(SO_4)_2·12H_2OSiO_2 (alum-SiO2)$ a highly efficient catalyst in the synthesis of quinolines. Heterocycles 2008; 75 (4): 947 - 954
  • 67. Zolfigol MA, Salehi P, Shiri M, Faal Rastegar T, Ghaderi A. Silica sulfuric acid as an efficient catalyst for the Friedländer quinoline synthesis from simple ketones and ortho-aminoaryl ketones under microwave irradiation. Journal of the Iranian Chemical Society 2008; 5 (3): 490-497.
  • 68. Hasaninejad A, Zare A, Zolfigol MA, Abdeshah M, Ghaderi A et al. Synthesis of poly-substituted quinolines via Friedländer heteroannulation reaction using silica-supported $P_2O_5$ under solvent-free conditions. Iranian Journal of Chemistry & Chemical Engineering. 2011; 30 (1): 73-81.
  • 69. Al-Qahtani AA, Al-Turki TM, Khan M, Mousa AA, Alkhathlan HZ. Synthesis of polysubstituted analogues of the 4-methyl-2- phenylquinoline. Asian Journal of Chemistry 2013; 25 (11): 6055-6058.
  • 70. S S, Datta B, A PM. A one step synthesis of polyfunctional quinoline using heterogeneous silica chloride as catalyst under sonic condition. International Journal of Scientific & Technology Research 2013; 2 (6): 54-57.
  • 71. Sabitha G, Babu RS, Reddy BVS, Yadav JS. Microwave assisted Friedländer condensation catalyzed by clay. Synthetic Communications 1999; 29 (24): 4403-4408.
  • 72. Motokura K, Mizugaki T, Ebitani K, Kaneda K. Multifunctional catalysis of a ruthenium-grafted hydrotalcite: One-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron Letters 2004; 45 (31): 6029-6032.
  • 73. López-Sanz J, Pérez-Mayoral E, Procházková D, Martín-Aranda RM, López-Peinado AJ. Zeolites promoting quinoline synthesis via Friedländer reaction. Topics in Catalysis 2010; 53 (19-20): 1430-1437.
  • 74. Maleki A, Javanshir S, Sharifi S. Silica-based sulfonic acid $(MCM-41-SO_3 H):$ A practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature. Current Chemistry Letters 2014; 3 (2): 125-132.
  • 75. Subashini R, Angajala G, Aggile K, Nawaz Khan F. Microwave-assisted solid acid-catalyzed synthesis of quinolinyl quinolinones and evaluation of their antibacterial, antioxidant activities. Research on Chemical Intermediates 2014; 41 (7): 4899-4912.
  • 76. Yadav JS, Reddy BV, Sreedhar P, Rao RS, Nagaiah K. Silver phosphotungstate: A novel and recyclable heteropoly acid for Friedländer quinoline synthesis. Synthesis 2004; 2004 (14): 2381-2385.
  • 77. Dabiri M, Bashiribod S. Phosphotungstic acid: An efficient, cost-effective and recyclable catalyst for the synthesis of polysubstituted quinolines. Molecules 2009; 14 (3): 1126-1133.
  • 78. Heravi MM, Haj NM, Baghernejad B, Beheshtia Y, Bamoharram FF. Application of heteropoly acids as heterogeneous and recyclable catalysts for Friedländer synthesis of quinolines. Journal of Chemistry 2010; 7 (3): 875-881.
  • 79. Rafiee E, Nejad FK, Joshaghani M. $C_sxH$_3−x$pPW$_12$O_{40}$ heteropoly salts catalyzed quinoline synthesis via Friedländer reaction. Chinese Chemical Letters 2011; 22 (3): 288-291.
  • 80. Rafiee E, Nejad FK, Joshaghani M. Solventless synthesis of quinoline derivatives: Acceleration of friedländer reaction by supported heteropoly acids. South African Journal of Chemistry 2011; 64: 95-100.
  • 81. Chen M-M, Zhang M, Xie F, Wang X-T. Convenient synthesis of novel heteroatom-substituted quinolines via Friedländer annulation using phosphotungstic acid as a reusable catalyst. Monatshefte für Chemie - Chemical Monthly 2014; 146 (4): 663-671.
  • 82. Na JE, Lee KY, Park DY, Kim JN. Modified Friedländer synthesis of quinolines from N-phenyl cyclic enaminones. Bulletin of the Korean Chemical Society 2005; 26 (2): 323-326.
  • 83. Shiri M, Zolfigol MA, Pirveysian M, Ayazi-Nasrabadi R, Kruger HG, et al. A new and facile access to the 2-(indol-3-yl)-3-nitriloquinolines based on Friedländer annulations. Tetrahedron 2012; 68 (30): 6059-6064.
  • 84. Mogilaiah K, Vidya K. Al2o3 catalyzed Friedlander synthesis of 1, 8-naphthyridines in the solid state. Indian Journal of Chemistry 2007; 46B: 1721-1723.
  • 85. Domínguez-Fernández F, López-Sanz J, Pérez-Mayoral E, Bek D, Martín-Aranda RM, et al. Novel basic mesoporous catalysts for the Friedländer reaction from 2-aminoaryl ketones: Quinolin-2(1h)-ones versus quinolines. ChemCatChem 2009; 1 (2): 241-243.
  • 86. Garella D, Barge A, Upadhyaya D, Rodríguez Z, Palmisano G, et al. Fast, solvent-free, microwave-promoted Friedländer annulation with a reusable solid catalyst. Synthetic Communications 2009; 40(1): 120-128.
  • 87. López-Sanz J, Pérez-Mayoral E, Soriano E, Sturm M, Martín-Aranda RM et al. New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis. Catalysis Today 2012; 187 (1): 97-103.
  • 88. Smuszkiewicz A, Pérez-Mayoral E, Soriano E, Sobczak I, Ziolek M et al. Bifunctional mesoporous MCF materials as catalysts in the Friedländer condensation. Catalysis Today 2013; 218-219: 70-75.
  • 89. Smuszkiewicz A, López-Sanz J, Pérez-Mayoral E, Soriano E, Sobczak I et al. Amino-grafted mesoporous materials based on mcf structure involved in the quinoline synthesis. Mechanistic insights. Journal of Molecular Catalysis A: Chemical 2013; 378: 38-46.
  • 90. Ricciardi R, Huskens J, Verboom W. Heterogeneous acid catalysis using a perfluorosulfonic acid monolayer-functionalized microreactor. Journal of Flow Chemistry 2013; 3 (4): 127-131.
  • 91. Bañón-Caballero A, Guillena G, Nájera C. Solvent-free enantioselective Friedländer condensation using BINAM-prolinamides as organocatalysts. The Journal of Organic Chemistry 2013; 78 (11): 5349-5356.
  • 92. Pérez-Mayoral E, Čejka J. [cu3(btc)2]: A metal-organic framework catalyst for the Friedländer reaction. ChemCatChem 2011; 3 (1): 157- 159.
  • 93. Perez-Mayoral E, Musilova Z, Gil B, Marszalek B, Polozij M et al. Synthesis of quinolines via Friedlander reaction catalyzed by cubtc metalorganic-framework. Dalton Trans 2012; 41 (14): 4036-4044.
  • 94. Phan NTS, Nguyen TT, Nguyen KD, Vo AXT. An open metal site metal–organic framework Cu(BDC) as a promising heterogeneous catalyst for the modified Friedländer reaction. Applied Catalysis A: General 2013; 464-465: 128-135.
  • 95. Jida M, Deprez B. Friedlander synthesis of polysubstituted quinolines and naphthyridines promoted by propylphosphonic anhydride (T3P(R)) under mild conditions. New Journal of Chemistry 2012; 36 (4): 869-873.
  • 96. Bennardi D, Blanco NM, Pizzio LR, Autino JC, Romanelli GP. An efficient and green catalytic method for Friedländer quinoline synthesis using tungstophosphoric acid included in a polymeric matrix. Current Catalysis 2015; 4 (1): 65-72.
  • 97. Shaabani A, Rahmati A, Badri Z. Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catalysis Communications 2008; 9 (1): 13-16.
  • 98. Siddiqui ZN, Khan K. Friedlander synthesis of novel benzopyranopyridines in the presence of chitosan as heterogeneous, efficient and biodegradable catalyst under solvent-free conditions. New Journal of Chemistry 2013; 37: 1595-1602.
  • 99. Reddy BVS, Venkateswarlu A, Reddy GN, Reddy YVR. $Chitosan-SO_3$ H: An efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Letters 2013; 54 (43): 5767-5770.
  • 100. Soleimani E, Naderi Namivandi M, Sepahvand H. $ZnCl_2$ supported on $Fe_3O_4@SiO_2$ core-shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent-free condition. Applied Organometallic Chemistry 2017; 31(2): 1-8.
  • 101. Beykia M, Fallah-Mehrjardia M. $Fe_3O_4@SiO_2-SO_3$ H as a recyclable heterogeneous nanomagnetic catalyst for the one-pot synthesis of substituted quinolines via Friedländer heteroannulation under solvent-free conditions. Iranian Chemical Communication 2017; 5: 484-493.
  • 102. Sheykhan M, Ma’mani L, Ebrahimi A, Heydari A. Sulfamic acid heterogenized on hydroxyapatite-encapsulated $γ-Fe_2O_3$ nanoparticles as a magnetic green interphase catalyst. Journal of Molecular Catalysis A: Chemical 2011; 335 (1-2): 253-261.
  • 103. Nasseri MA, Zakerinasab B, Samieadel MM. Sulfamic acid supported on $Fe_3O_4@SiO_2$ superpara magnetic nanoparticles as a recyclable heterogeneous catalyst for the synthesis of quinolines. RSC Advances 2014; 4 (79): 41753-41762.
  • 104. Jafarzadeh M, Soleimani E, Norouzi P, Adnan R, Sepahvand H. Preparation of trifluoroacetic acid-immobilized $Fe_3 O_4@SiO_2-APTES$ nanocatalyst for synthesis of quinolines. Journal of Fluorine Chemistry 2015; 178: 219-224.
  • 105. Esmaeilpour M, Javidi J. $Fe_3O_4@SiO_2-imid-PMAn$ magnetic porous nanosphere as reusable catalyst for synthesis of polysubstituted quinolines under solvent-free conditions. Journal of the Chinese Chemical Society 2015; 62 (4): 328-334.
  • 106. Bankar SR, Shelke SN. Applicability of magnetically recyclable ferrite-l-cysteine nanocatalyst for the green synthesis of quinoline and pyrazole derivatives under microwave irradiation. Current Catalysis 2018; 7 (1): 43-51.
  • 107. Gawande MB, Rathi AK, Nogueira ID, Varma RS, Branco PS. Magnetite-supported sulfonic acid: A retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chemistry 2013; 15 (7): 1895–1899.
  • 108. Baghbanian SM, Farhang M. $CuFe_2O_4$ nanoparticles: A magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media. RSC Advances 2014; 4 (23): 11624-11633.
  • 109. Hejazi S, Shojaei A, Tabatabaeian K, Shirini F. Preparation and characterization of $ZrO_2$ supported $Fe_3O_4 MNPs$ as an effective and reusable superparamagnetic catalyst for the Friedländer synthesis of quinoline derivatives. Journal of the Serbian Chemical Society 2015; 80 (8): 971-982.
  • 110. Sadjadi S, Shiri S, Hekmatshoar R, Beheshtiha YS. Nanocrystalline aluminium oxide: A mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolines via Friedlander hetero-annulation. Monatshefte für Chemie - Chemical Monthly 2009; 140 (11): 1343-1347.
  • 111. Vinu A, Reddy B, Chauhan S, Chakravarti R, Zaidi S, et al. Efficient synthesis of 2,3,4-trisubstituted quinolines via Friedländer annulation with nanoporous cage-type aluminosilicate AIKIT-5 catalyst. Synlett 2010; 2010 (17): 2597-2600.
  • 112. Hasaninejad A, Shekouhya M, Zare A. Silica nanoparticles efficiently catalyzed synthesis of quinolines and quinoxalines. Catalysis Science & Technology 2012; 2: 201–214.
  • 113. Abdollahi-Alibeik M, Pouriayevali M. Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catalysis Communications 2012; 22: 13-18.
  • 114. Tahanpesar E, Mohammadi M, farhadi A. Friedländer synthesis of poly-substituted quinolines using a highly efficient and reusable heterogeneous catalyst. The $22^{nd}$ Iranian Seminar of Organic Chemistry 2014; 1.
  • 115. Azimi SC, Abbaspour-Gilandehb E. $Li^+$ modified nanoporous Na+-montmorillonite an efficient novel catalytic system for synthesis of quinolines. Journal of Nanostructures 2014; 4: 335-346.
  • 116. Bandyopadhyay P, Prasad GK, Sathe M, Sharma P, Kumar A et al. Titania nanomaterials: Efficient and recyclable heterogeneous catalysts for the solvent-free synthesis of poly-substituted quinolines via Friedlander hetero-annulation. RSC Advances 2014; 4 (13): 6638-6645.
  • 117. Teimouri A, Najafi Chermahini A. A mild and highly efficient Friedländer synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arabian Journal of Chemistry 2016; 9: S433-S439.
  • 118. Palaniraja J, Arunachalam P, Vijayalakshmi U, Ghanem MA, Mohana Roopan S. Synthesis of calcium silicate nanoparticles and its catalytic application in Friedlander reaction. Inorganic and Nano-Metal Chemistry 2017; 47 (6): 946-949.
  • 119. Nezhad JM, Akbari J, Heydari A, Alirezapour B. CuO nanoparticles as an efficient and reusable catalyst for the one-pot Friedlander quinoline synthesis. Bulletin of the Korean Chemical Society 2011; 32 (11): 3853-3854.
  • 120. Hosseini-Sarvari M. Synthesis of quinolines using nano-flake ZnO as a new catalyst under solvent-free conditions. Journal of Iranian Chemical Society 2011; 8: S119-S128.
  • 121. Roopan SM, Khan FRN. SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5hindolo [3,2-c]-acridine derivatives. Medicinal Chemistry Research 2010; 20 (6): 732-737.
  • 122. Venkanna A, Swapna K, Rao PV. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3-dicarboxylates under ligand free conditions. RSC Advances 2014; 4 (29): 15154-15160.
  • 123. Ziyadi H, Heydari A. $PVA/Fe(NO_3)_3$ nanofiber mats: An efficient, heterogeneous and recyclable catalyst for the synthesis of quinolines via Friedländer annulations. RSC Advances 2014; 4 (102): 58208-58213.
  • 124. Godino-Ojer M, López-Peinado AJ, Maldonado-Hódar FJ, Pérez-Mayoral E. Highly efficient and selective catalytic synthesis of quinolines involving transition-metal-doped carbon aerogels. ChemCatChem 2017; 9 (8): 1422-1428.
  • 125. Azizi M, Nasr-Esfahani M, Mohammadpoor-Baltork I, Moghadam M, Mirkhani V et al. Synthesis of quinolines and pyrido[3,2-g or 2,3-g] quinolines catalyzed by heterogeneous propylphosphonium tetrachloroindate ionic liquid. Journal of Organic Chemistry 2018; 83 (23): 14743-14750.
  • 126. Cho CS, Ren WX. A recyclable palladium-catalyzed modified Friedländer quinoline synthesis. Journal of Organometallic Chemistry 2007; 692 (19): 4182-4186.
  • 127. Chen BWJ, Chng LL, Yang J, Wei Y, Yang J et al. Palladium-based nanocatalyst for one-pot synthesis of polysubstituted quinolines. ChemCatChem 2013; 5 (1): 277-283.
  • 128. Angajala G, Subashini R. Nickel nanoparticles: A highly efficient and retrievable catalyst for the solventless Friedlander annulation of quinolines and their in-silico molecular docking studies as histone deacetylase inhibitors. RSC Advances 2015: 5 (57): 45599-45610.
  • 129. Godino-Ojer M, Soriano E, Calvino-Casilda V, Maldonado-Hódar FJ, Pérez-Mayoral E. Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry. Chemical Engineering Journal 2017; 314: 488-497.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

DFT (density functional theory) studies on cycloisomerization of 15–membered triazatriacetylenic macrocycle

Mohamad Reza TALEI BAVIL OLYAI, Mansooreh MOVAHEDI, Nader ZABARJAD SHIRAZ, Ali EZABADI, Marjaneh SAMADIZADEH

Chemical composition and biological activities of essential oils of two new chemotypes of Glebionis Cass.

Hüseyin SERVİ

Preparation of G-CuO NPs and G-ZnO NPs with mallow leaves, investigation of their antibacterial behavior and synthesis of bis(indolyl)methane compounds under solventfree microwave assisted dry milling conditions using G-CuO NPs as a catalyst

Maden SULAK

One‒pot green synthesized protein‒based silver nanocluster as prooxidant biosensor

Esin AKYÜZ

Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on SiMWCNT containing anode materials

M. Taha DEMİRKAN, Mehbare DOĞRUSÖZ, Rezan DEMİR ÇAKAN

Effect of fuel choice on conductivity and morphological properties of samarium doped ceria electrolytes for IT-SOFC

Vedat SARIBOĞA, Mehmet Ali Faruk ÖKSÜZÖMER, Burcu AYGÜN

Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support

Ali Şems AHSEN, Osman ÖZTÜRK, Oğuz Kaan ÖZDEMİR, Aydın HAŞİMOĞLU, İnci KARAASLAN

Antiinfective properties of ursolic acid-loaded chitosan nanoparticles against Staphylococcus aureus

Fatemeh GHASEMZADEH, Ghasem D. NAJAFPOUR, Maedeh MOHAMMADI

N doping of $TiO_2$ nanocrystal for efficient photodegradation of organic pollutants under ultraviolet and visible light irradiation

Qianrui LV, Xiaoyou YU

Sn(II)/PN@AC catalysts: synthesis, physical-chemical characterization, and applications

Yibo WU, Yongjun HAN, Li WANG, Qinbin LI, Wei MA, Fu XV, Fuxiang LI