Green dehydrogenation of dimethylamine borane catalyzed by cheaply copper(0) nanocatalysts without any stabilizer at nearly room temperature

Green dehydrogenation of dimethylamine borane catalyzed by cheaply copper(0) nanocatalysts without any stabilizer at nearly room temperature

In this work, the findings of the work on the green dehydrogenation behavior of molten dimethylamine borane (DMAB) catalyzed by the precatalyst copper(II) acetylacetonate $(Cu(acac)_2 )$ in solvent-free medium (green) at near room temperature (nRT, 30.0+0.1°C) were reported. Herein, a complete study has been presented, which includes the following steps: (i) synthesis and catalytic activity of Cu(0) NCats in solvent-free medium, (ii) determination of activation energy for Cu(0) NCats catalyzed green dehydrogenation of DMAB, (iii) demonstration of catalytic lifetime of Cu(0) NCats, (iv) test of isolability and reusability of Cu(0) NCats, (v) poisoning experiments using carbon disulfide on a per-active-copper-atom basis, (vii) characterization of Cu(0) NCats by UV–vis, XRD, XPS and TEM/HRTEM/TEM-EDX spectroscopies. In addition, ATR-FTIR and $^{11}B$ NMR techniques were use to characterize the cyclic aminoborane product obtained as a result of dehydrogenation of dimethylamine-borane.

___

  • 1. Graetz J. New approaches to hydrogen storage. Chemical Society Reviews 2009; 38 (1): 73–82. doi: 10.1039/B718842K
  • 2. Staubitz A, Robertson APM, Manners I. Ammonia-borane and related compounds as dihydrogen sources. Chemical Reviews 2010; 110 (7): 4079–4124. doi: 10.1021/cr100088b
  • 3. United States. Dept. of Energy. Office of Science. Basic research needs for the hydrogen economy. report of the basic energy sciences workshop on hydrogen production, storage and use. May 13-15, 2003. doi: 10.2172/899224
  • 4. EIA. Annual Energy Outlook, U.S. Energy Inf. Adm., ES-5; 2016. doi: EIA-0383
  • 5. IAC. Lighting the way Toward a sustainable energy future, Interacademy Council. 2007; 31.
  • 6. Acidereli H, Cellat K, Calimli MH, Sen F. Palladium/ruthenium supported on graphene oxide (PdRu@GO) as an efficient, stable and rapid catalyst for hydrogen production from DMAB under room conditions. Renewable Energy 2020; 161: 200-206. doi: 10.1016/j. renene.2020.07.105
  • 7. Feng W, Yang L, Cao N, Du C, Dai H et al. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. International Journal of Hydrogen Energy 2014; 39 (7): 3371-3380. doi: 10.1016/j.ijhydene.2013.12.113
  • 8. Staubitz A, Robertson APM, Sloan ME, Manners I. Amine and phosphine borane adducts: New interest in old molecules. Chemical Reviews 2010; 110 (7): 4023–4078. doi: 10.1021/cr100105a
  • 9. Van den Berg AWC, Areán CO. Materials for hydrogen storage: Current research trends and perspectives. Chemical Communications 2008; (6): 668–681. doi: 10.1039/b712576n
  • 10. Kundu D, Pugazhenthi G, Banerjee T. Low- to room-temperature dehydrogenation of dimethylamine borane facilitated by ıonic liquids: molecular modeling and experimental studies. Energy Fuels 2020; 34 (10): 13167–13178. doi: 10.1021/acs.energyfuels.0c01896
  • 11. Jaska CA, Temple K, Lough AJ, Manners I. Catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. Phosphorus, Sulfur Silicon Related Elements 2004; 179 (4-5): 733–736. doi: 10.1080/10426500490426683
  • 12. Turner J, Sverdrup G, Mann MK, Maness P, Kroposki B et al. Renewable hydrogen production. International Journal of Energy Research 2008; 32 (5): 379–407. doi: 10.1002/er.1372
  • 13. Karaboga S, Ozkar S. Nanoalumina supported palladium(0) nanoparticle catalyst for releasing H-2 from dimethylamine borane. Applied Surface Science 2019; 487: 433-441. doi: 10.1016/j.apsusc.2019.05.087
  • 14. Zahmakiran M, Özkar S. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane. Inorganic Chemistry 2009; 48 (18): 8955–8964. doi: 10.1021/ic9014306
  • 15. Yempally V, Moncho S, Wang YY, Kyran SJ, Fan WY et al. Thermal dehydrogenation of dimethylamine borane catalyzed by a bifunctional rhenium complex. Organometallics 2019; 38 (13): 2602-2609. doi: 10.1021/acs.organomet.9b00115
  • 16. Zahmakıran M, Tristany M, Philippot K, Fajerwerg K, Özkar S et al. Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine–borane. Chemical Communications 2010; 46 (17): 2938–2940. doi: 10.1039/c000419g
  • 17. Beweries T, Hansen S, Kessler M, Klahn M, Rosenthal U. Catalytic dehydrogenation of dimethylamine borane by group 4 metallocene alkyne complexes and homoleptic amido compounds. Dalton Transactions 2011; 40 (30): 7689–7692. doi: 10.1039/c1dt10366k
  • 18. Kalidindi SB, Esken D, Fischer RA. B-N Chemistry@ZIF-8: Dehydrocoupling of dimethylamine borane at room temperature by sizeconfinement effects. Chemistry—A European Journal 2011; 17 (24): 6594–6597. doi: 10.1002/chem.201100518
  • 19. Sen B, Kuyuldar E, Savk A, Calimli, H, Duman S et al. Monodisperse ruthenium-copper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB. Internatıonal Journal of Hydrogen Energy 2019; 44 (21): 10744-10751. doi: 10.1016/j. ijhydene.2019.02.176
  • 20. Tang CY, Phillips N, Bates JI, Thompson AL, Gutmann MJ et al. Dimethylamine borane dehydrogenation chemistry: syntheses, X-ray and neutron diffraction studies of 18-electron aminoborane and 14-electron aminoboryl complexes. Chemical Communications 2012; 48 (65): 8096–8098. doi: 10.1039/c2cc33361a
  • 21. Duman S, Özkar S. Oleylamine-stabilized ruthenium(0) nanoparticles catalyst in dehydrogenation of dimethylamine-borane. International Journal of Hydrogen Energy 2013; 38 (24): 10000–10011. doi: 10.1016/j.ijhydene.2013.05.119
  • 22. Cui P, Spaniol TP, Maron L, Okuda J. Dehydrogenation of amine-borane Me2NH·BH3 catalyzed by a lanthanum-hydride complex. Chemistry—A European Journal 2013; 19 (40): 13437–13444. doi: 10.1002/chem.201301732
  • 23. Zhu JW, Zins EL, Alikhani ME. Dehydrocoupling of dimethylamine borane by titanocene: Elucidation of ten years of inconsistency between theoretical and experimental descriptions. Physical Chemistry Chemical Physics 2018; 20 (23): 15687-15695. doi: 10.1039/ c8cp01970c
  • 24. Pal S, Kusumoto S, Nozaki K. Dehydrogenation of dimethylamine-borane catalyzed by half-sandwich Ir and Rh complexes: Mechanism and the role of Cp* noninnocence. Organometallics 2018; 37 (6): 906-914. doi: 10.1021/acs.organomet.7b00889
  • 25. Duman S, Özkar S. Oleylamine-Stabilized Copper(0) Nanoparticles: An Efficient and Low-Cost Catalyst for the Dehydrogenation of Dimethylamine Borane. ChemCatChem 2017; 9 (13): 2588–2598. doi: 10.1002/cctc.201700367
  • 26. Demir H, Duman S. Monodisperse nickel nanoparticles in the solvent-free dehydrogenation of dimethylamine borane. International Journal of Hydrogen Energy 2015; 40 (32): 10063–10071. doi: 10.1016/j.ijhydene.2015.06.093
  • 27. Bukan B, Duman S. Green dehydrogenation of dimethylamine-borane catalyzed by in situ generated ruthenium nanoclusters in presence of various supporters and its comparison with classical methods. International Journal of Hydrogen Energy 2018; 43 (17): 8278–8289. doi: 10.1016/j.ijhydene.2018.03.072
  • 28. Nako AE, White AJP, Crimmin MR. Bis(σ-B-H) complexes of copper(i): precursors to a heterogeneous amine-borane dehydrogenation catalyst. Dalton Transactions 2015; (44): 12530–12534. doi: 10.1039/c5dt02144h
  • 29. Sanyal U, Jagirdar BR. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: Atom economy and green process. Inorganic Chemistry 2012; 51 (23): 13023–13033. doi: 10.1021/ic3021436
  • 30. Laidler K. Chemical Kinetics. Harper Row 1987; 1: 233–270. doi: 10.1007/0-306-48390-4_2
  • 31. Yodaa S, Takebayashia Y, Suea K, Furuyaa T, Otake K. Thermal decomposition of copper (II) acetylacetonate in supercriticalcarbon dioxide: In situ observation via UV–vis spectroscopy. The Journal of Supercritical Fluids 2017; 123 82–91. doi: 10.1016/j.supflu.2016.12.017
  • 32. Creighton JA, Eadon DG. Ultraviolet–visible absorption spectra of the colloidal metallic elements. Journal of the Chemical Society, Faraday Transactions 1991; 87 (24): 3881–3891. doi: 10.1039/FT9918703881
  • 33. Tanyıldızı S, Morkan İ, Özkar S. Ceria supported copper(0) nanoparticles as efficient and cost-effective catalyst for the dehydrogenation of dimethylamine borane. Molecular Catalysis 2017; 434: 57–68. doi: 10.1016/j.mcat.2017.03.002
  • 34. Miller AC, Simmons GW. Copper by XPS. Surface Science Spectra 1993; 2: 55–56. doi: 10.1116/1.1247725
  • 35. Wu JCS, Tseng IH, Chang WC. Synthesis of titania-supported copper nanoparticles via refined alkoxide sol-gel process. Journal of Nanoparticle Research 2001; 3: 113–118. doi: 10.1023/A:1017553125829
  • 36. Chusuei CC, Brookshier MA, Goodman DW. Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size. Langmuir 1999; 15 (8): 2806–2808. doi: 10.1021/la9815446
  • 37. Xu D, Fan D, Shen W. Catalyst-free direct vapor-phase growth of Zn1-xCuxO micro-cross structures and their optical properties. Nanoscale Research Letters 2013; 8 (1): 46. doi: 10.1186/1556-276X-8-46
  • 38. Wallace PL, Weissmanna S, Mueller MH, Calveit LD, Jenkins R. The new ICDD Metals and Alloys Indexes: Usefulness and potentialities. Powder Diffraction 1994; 9 (4): 239-245. doi: 10.1017/S0885715600018947
  • 39. McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W et al. Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship. Powder Diffraction 2013; 1 (2): 64-77. doi: 10.1017/S0885715600011593
  • 40. Gao W, Zhao Y, Liu J, Huang Q, He S et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides. Catalysis Science & Technology 2013; 3 (5): 1324–1332. doi: 10.1039/C3CY00025G
  • 41. Barrabes N, Cornado D, Foettinger K, Dafinov A, Llorca J et al. Hydrodechlorination of trichloroethylene on noble metal promoted Cuhydrotalcite-derived catalysts. Journal of catalysis 2009; 263 (2): 239–246. doi: 10.1016/j.jcat.2009.02.015
  • 42. Gao W, Zhao Y, Chen H, Chen H, Li Y et al. Core–shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas. Green Chemistry 2015; 17 (3): 1525–1534. doi: 10.1039/c4gc01633e
  • 43. Friedrich A, Drees M, Schneider S. Ruthenium-catalyzed dimethylamine borane dehydrogenation: Stepwise metal-centered dehydrocyclization. Chemistry—A European Journal 2009; 15 (40): 10339–10342. doi: 10.1002/chem.200901372
  • 44. Widegren JA, Finke RG. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. Journal of Molecular Catalysis A: Chemical 2003; 198 (1-2): 317–341. doi: 10.1016/ S1381-1169(02)00728-8
  • 45. Lin Y, Finke RG. A More General Approach to Distinguishing “Homogeneous” from “Heterogeneous” Catalysis: Discovery of Polyoxoanion- and Bu4N+-Stabilized, Isolable and Redissolvable, High-Reactivity Ir.apprx.190-450 Nanocluster Catalysts. Inorganic Chemistry 1994; 33 (22): 4891–4910. doi: 10.1021/ic00100a012
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane

Ibtihel ZAIER, Önder METİN

Study on potential applications and toxicity analysis of green synthesized nanoparticles

Rajni GARG, Priya RANI, Nnabuk Okon EDDY, Rishav GARG

Volatile constituents of three Thymus sipyleus Boiss. subspecies from different sites in Turkey

Hale Gamze AĞALAR, Mine KÜRKÇÜOGLU, Kemal Hüsnü Can BAŞER, Kenan TURGUT

Synthesis and application of colloidal CdS quantum dots as interface modification material in perovskite solar cells

Esma YENEL

Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for $CO_2$ capture

Gülcihan GÜZEL KAYA

Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique

Mustafa SOYLAK, Muhammad Saqaf JAGIRANI

Novel surfactant stabilized PLGA cisplatin nanoparticles for drug delivery applications

Mohammad Salim AKHTER, Samra UMAR, Amir WASEEM, Manzar ZAHRA

In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue

Selin GÜMRÜKÇÜ, Belkıs USTAMEHMETOĞLU, Mukaddes ÖZÇEŞMECİ, Esin HAMURYUDAN, Esma SEZER

Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy

Yücel KOÇ, Uğur MORALI, Salim EROL, Hüseyin AVCI

A flame retardant-hardener for epoxy resins: Synthesis, structural, and DFT studies ofthe $[Cu(H_2NC_2H_4NH_2)_2(H_2O)Cl]Cl$ complex

Borys MYKHALICHKO, Helen LAVRENYUK, Oleg MYKHALICHKO