Ferrihydrite/ultrasound activated peroxymonosulfate for humic acid removal

Ferrihydrite/ultrasound activated peroxymonosulfate for humic acid removal

In this study, ferrihydrite/ultrasound (US) system was used to activate peroxymonosulfate (PMS) to treat humic acid (HA) in artificial aqueous. The physical and chemical properties of ferrihydrite were characterized using SEM, zeta potential, BET, XRD, FTIR, and XPS analysis. A series of experiments were conducted to evaluate the effect of various factor on HA removal, including dosage of ferrihydrite, PMS concentration and pH value. The combination uses of US and ferrihydrite had obvious synergistic effect for HA removal. Under ferrihydrite/US/PMS system, nonthermal effect of US played the main role for HA removal. According to the result of radical quenching experiment, $^1O_2$ was identified as the main reactive oxidative species (ROS) which contributed to HA removal. The study indicates ferrihydrite/US/PMS system is promising strategy for treatment of natural organic pollutant.

___

  • 1. Yin H, Guo Q, Lei C, Chen W, Huang B. Electrochemical-driven carbocatalysis as highly efficient advanced oxidation processes for simultaneous removal of humic acid and Cr(VI). Chemical Engineering Journal 2020; 396: 125156. doi: 10.1016/j.cej.2020.125156
  • 2. Guo J, Khan S, Cho SH, Kim J. ZnS nanoparticles as new additive for polyethersulfone membrane in humic acid filtration. Journal of Industrial and Engineering Chemistry 2019; 79: 71-78. doi: 10.1016/j.jiec.2019.05.015
  • 3. Zhang W, Xie D, Li X, Ye W, Jiang X et al. Electrocatalytic removal of humic acid using cobalt-modified particle electrodes. Applied Catalysis A: General 2018; 559: 75-84. doi: 10.1016/j.apcata.2018.04.012
  • 4. Su X, Hu J, Zhang J, Liu H, Yan C et al. Investigating the adsorption behavior and mechanisms of insoluble Humic acid/starch composite microspheres for metal ions from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021; 610: 125672. doi: 10.1016/j.colsurfa.2020.125672
  • 5. Li J, Hao X, van Loosdrecht MC, Liu R. Relieving the inhibition of humic acid on anaerobic digestion of excess sludge by metal ions. Water Research 2021; 188: 116541. doi: 10.1016/j.watres.2020.116541
  • 6. Cai QQ, Lee B CY, Ong SL, Hu JY. Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment–Recent advances, challenges and perspective. Water Research 2021; 190: 116692. doi: 10.1016/j.watres.2020.116692
  • 7. Clematis D, Panizza M. Electro-Fenton, solar photoelectro-Fenton and UVA photoelectro-Fenton: Degradation of Erythrosine B dye solution. Chemosphere 2020; 129480. doi: 10.1016/j.chemosphere.2020.129480
  • 8. Yu H, Zhang Z, Zhang L, Dong H, Yu H. Improved Norfloxacin degradation by urea precipitation Ti/SnO2–Sb anode under photo-electro catalysis and kinetics investigation by BP-neural-network-physical modeling. Journal of Cleaner Production 2021; 280: 124412. doi: 10.1016/j.jclepro.2020.124412
  • 9. Huang L, Zhang L, Bao D, Jiang X, Li J et al. Hybrid photo-catalyst of Sb2S3 NRs wrapped with rGO by C–S bonding: Ultra-high photo-catalysis effect under visible light. Applied Surface Science 2020; 526: 146742. doi: 10.1016/j.apsusc.2020.146742
  • 10. Demir-Duz H, Ayyildiz O, Aktürk AS, Álvarez MG, Contreras S. Approaching zero discharge concept in refineries by solar–assisted photoFenton and photo-catalysis processes. Applied Catalysis B: Environmental 2019; 248: 341-348. doi: 10.1016/j.apcatb.2019.02.026
  • 11. Kohantorabi M, Moussavi G, Giannakis S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chemical Engineering Journal 2020; 127957. doi: 10.1016/j.cej.2020.127957
  • 12. Wang W, Xu Y, Zhong D, Zhong N. Electron utilization efficiency of ZVI core activating PMS enhanced by C-N/g-C3N4 shell. Applied Catalysis A: General 2020; 608: 117828. doi: 10.1016/j.apcata.2020.117828
  • 13. Li Y, Yang T, Qiu S, Lin W, Yan J et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chemical Engineering Journal 2020; 389: 124382. doi: 10.1016/j.cej.2020.124382
  • 14. Song H, Yan L, Wang Y, Jiang J, Ma J et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation. Chemical Engineering Journal 2020; 391: 123560. doi: 10.1016/j.cej.2019.123560
  • 15. Zhou X, Luo C, Wang J, Wang H, Chen Z et al. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation. Science of the Total Environment 2020; 143120. doi: 10.1016/j.scitotenv.2020.143120
  • 16. Wang M, Jin C, Kang J, Liu J, Tang Y et al. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chemical Engineering Journal 2020; 128118. doi: 10.1016/j.cej.2020.128118
  • 17. Wang G, Zhao Y, Ma H, Zhang C, Dong X et al. Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants. Science of the Total Environment 2021; 756: 144139. doi: 10.1016/j.scitotenv.2020.144139
  • 18. Qi C, Liu X, Lin C, Zhang H, Li X et al. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chemical Engineering Journal 2017; 315: 201-209. doi: 10.1016/j.cej.2017.01.012
  • 19. Yang H, Luo B, Lei S, Wang Y, Sun J et al. Enhanced humic acid degradation by Fe3O4/ultrasound-activated peroxymonosulfate : Synergy index, non-radical effect and mechanism. Separation and Purification Technology 2021; 264: 118466. doi: 10.1016/j.seppur.2021.118466
  • 20. Xu D, Lai X, Guo W, Dai P. Microwave-assisted catalytic degradation of methyl orange in aqueous solution by ferrihydrite/maghemite nanoparticles. Journal of Water Process Engineering 2017; 16: 270-276. doi: 10.1016/j.jwpe.2017.02.010
  • 21. Xu T, Zhu R, Liu J, Zhou Q, Zhu J et al. Fullerol modification ferrihydrite for the degradation of acid red 18 under simulated sunlight irradiation. Journal of Molecular Catalysis A: Chemical 2016; 424: 393-401. doi: 10.1016/j.molcata.2016.09.024
  • 22. Zhou R-y, Yu J-x, Li H-x, Chi R-a. Removal of phosphate from aqueous solution by ferrihydrite/bagasse composite prepared through in situ precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020; 603: 125144. doi: 10.1016/j. colsurfa.2020.125144
  • 23. Otgon N, Zhang G, Zhang K, Yang C. Removal and fixation of arsenic by forming a complex precipitate containing scorodite and ferrihydrite. Hydrometallurgy 2019; 186: 58-65. doi: 10.1016/j.hydromet.2019.03.012
  • 24. Zhang S, Yang Y, Takizawa S, Hou L-a. Removal of dissolved organic matter and control of membrane fouling by a hybrid ferrihydriteultrafiltration membrane system. Science of the Total Environment 2018; 631-632: 560-569. doi: 10.1016/j.scitotenv.2018.03.045
  • 25. Peng H, Yang JC, Fu ML, Yuan B. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: Performance and mechanism. Chemosphere 2020; 242: 125140. doi: 10.1016/j.chemosphere.2019.125140
  • 26. Donohue MD, Aranovich GL. Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science 1998; 76-77: 137-152. doi: 10.1016/S0001-8686(98)00044-X
  • 27. Liu H, Bruton T A, Li W, Buren J V, Prasse C et al. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. Environmental Science & Technology 2016; 50: 890-898. doi: 10.1021/ acs.est.5b04815
  • 28. Sheng B, Yang F, Wang Y, Wang Z, Li Q et al. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/ PMS. Chemical Engineering Journal 2019; 375: 121989. doi: 10.1016/j.cej.2019.121989
  • 29. Zhang J, Song H, Liu Y, Wang L, Li D et al. Remarkable enhancement of a photochemical Fenton-like system (UV-A/Fe(II)/PMS) at nearneutral pH and low Fe(II)/peroxymonosulfate ratio by three alpha hydroxy acids: Mechanisms and influencing factors. Separation and Purification Technology 2019; 224: 142-151. doi: 10.1016/j.seppur.2019.04.086
  • 30. Liu N, Lu N, Yu H, Chen S, Quan X. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: Catalyst design, reaction kinetic and mechanism analysis. Chemical Engineering Journal 2020; 127228. doi: 10.1016/j.cej.2020.127228
  • 31. Owusu-Ansah P, Yu X, Osae R, Mustapha AT, Zhang R et al. Inactivation of Bacillus cereus from pork by thermal, non-thermal and singlefrequency/multi-frequency thermosonication: Modelling and effects on physicochemical properties. LWT 2020; 133: 109939. doi: 10.1016/j.lwt.2020.109939
  • 32. Strieder MM, Neves MI, Zabot GL, Silva EK, Meireles MA. A techno-economic evaluation for the genipin recovery from Genipa americana L. employing non-thermal and thermal high-intensity ultrasound treatments. Separation and Purification Technology 2021; 258: 117978. doi: 10.1016/j.seppur.2020.117978
  • 33. Gila A, Sánchez-Ortiz A, Jiménez A, Beltrán G. The ultrasound application does not affect to the thermal properties and chemical composition of virgin olive oils. Ultrasonics Sonochemistry 2021; 70: 105320. doi: 10.1016/j.ultsonch.2020.105320
  • 34. Huang S, Zhang Q, Liu P, Ma S, Xie B et al. Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system. Applied Catalysis B: Environmental 2020; 263: 118336. doi: 10.1016/j. apcatb.2019.118336
  • 35. Zhang S, Du Q, Sun Y, Song J, Yang F et al. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal. Science of the Total Environment 2020; 720: 137415. doi: 10.1016/j.scitotenv.2020.137415
  • 36. Meng F, Wang Y, Chen Z, Hu J, Lu G et al. Synthesis of CQDs@FeOOH nanoneedles with abundant active edges for efficient electro-catalytic degradation of levofloxacin: Degradation mechanism and toxicity assessment. Applied Catalysis B: Environmental 2021; 282: 119597. doi: 10.1016/j.apcatb.2020.119597
  • 37. Wang X, Lu W, Zhao Z, Zhong H, Zhu Z et al. In situ stable growth of β-FeOOH on g-C3N4 for deep oxidation of emerging contaminants by photocatalytic activation of peroxymonosulfate under solar irradiation. Chemical Engineering Journal 2020; 400: 125872. doi: 10.1016/j. cej.2020.125872
  • 38. Liu L, Li Y, Li W, Zhong R, Lan Y et al. The efficient degradation of sulfisoxazole by singlet oxygen (1O2) derived from activated peroxymonosulfate (PMS) with Co3O4–SnO2/RSBC. Environmental Research 2020; 187: 109665. doi: 10.1016/j.envres.2020.109665
  • 39. Liu Y n, Qu R, Li X, Wei Y, Feng L. A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. Journal of Colloid and Interface Science 2020; 579: 412-424. doi: 10.1016/j.jcis.2020.06.073
  • 40. Wang S, Wang J. Kinetics of PMS activation by graphene oxide and biochar. Chemosphere 2020; 239: 124812. doi: 10.1016/j. chemosphere.2019.124812
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK