Synthesis, predictions of drug-likeness, and pharmacokinetic properties of some chiral thioureas as potent enzyme inhibition agents

Synthesis, predictions of drug-likeness, and pharmacokinetic properties of some chiral thioureas as potent enzyme inhibition agents

A series of chiral thioureas (1 - 17) were synthesized from and tested for their anticholinesterase, tyrosinase, and urease enzyme inhibitor activities. Various phenylisothiocyanates were added to solution of ˪-cysteine in methanol: water (1 : 1 v / v) at room temperature and stirred for 24 h. The precipitated solid was recrystallized from n-butanol. Pure compounds were characterized by NMR $(^{1} H and ^{13}C)$, FTIR, and CHNS. Tertiary amine containing N-(4-(diethylamino)phenyl)-N’-(2-mercapto-carboxyethanyl)thiourea 17, N-(4-(dimethylamino)phenyl)-N’-(2-mercapto-carboxyethanyl)thiourea 16 and trimethoxy containing N-(3,4,5-trimethoxyphenyl)- N’-(2-mercapto-carboxyethanyl)thiourea 14 were more active than galantamine against AChE and BChE enzymes. In tyrosinase enzyme inhibition activity, compound 14, 10, 12, 6, 13, and 11 exhibited higher tyrosinase inhibitory activity showing $IC_{50}$ values of 1.1 ± 0.1, 1.5 ± 0.3, 1.6 ± 0.6, 1.9 ± 0.5, 2.2 ± 0.9 and 2.9 ± 0.2 mM, respectively. In urease enzyme inhibition activity assay, 17 showed higher activity. This work demonstrates the pharmacological significance of chiral thiourea derivatives synthesized from ˪-cysteine and shows their potential. There is a need to perform more in vitro and in vivo biological activities followed by clinical trials to bring such thiourea to the market.

___

  • 1. Price N, Stevens L. Fundamentals of enzymology. Oxford: Oxford University Press, 1982, pp. 33. doi: 10.1016/0307-4412(83)90083-3
  • 2. Nelson DL, Cox MM. Lehninger Principles of Biochemistry. $3^{rd}$ ed., United States, New York: W. H. Freeman Press, 2000, pp. 201. doi: 10.1007/s00897000455a
  • 3. Robinson PK. Enzymes: principles and biotechnological applications. Essays in Biochemistry 2015; 59: 1-41. doi: 10.1042/bse0590001
  • 4. Koppitz M, Eis K. Automated medicinal chemistry. Drug Discovery Today 2006; 11: 561-568. doi: 10.1016/j.drudis.2006.04.005
  • 5. Saeed A, Shakil Shah M, Ali Larik F, Khan SU, Channar PA et al. Synthesis, computational studies and biological evaluation of new 1-acetyl3-aryl thiourea derivatives as potent cholinesterase inhibitors. Medicinal Chemistry Research 2017; 26: 1635-1646. doi: 10.1007/s00044- 017-1829-6
  • 6. van Greunen DG, van der Westhuizen CJ, Cordier W, Nell M, Stander A et al. Novel N-benzylpiperidine carboxamide derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry 2019; 179: 680-693. doi: 10.1016/j.ejmech.2019.06.088
  • 7. Bano B, Kanwal, Khan KM, Lodhi, A, Salar U et al. Synthesis, in vitro urease inhibitory activity, and molecular docking studies of thiourea and urea derivatives. Bioorganic Chemistry 2018; 80: 129-144. doi: 10.1016/j.bioorg.2018.06.007
  • 8. Kanwal, Khan M, Arshia, Khan KM, Parveen S et al. Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorganic Chemistry 2019; 83: 595-610. doi: 10.1016/j.bioorg.2018.10.070
  • 9. Meziant L, Bachir-bey M, Bensouici C, Saci F, Boutiche M et al. Assessment of inhibitory properties of flavonoid-rich fig (Ficus carica L.) peel extracts against tyrosinase, α-glucosidase, urease and cholinesterases enzymes, and relationship with antioxidant activity. European Journal of Integrative Medicine 2021; 43: 101272. doi: 10.1016/j.eujim.2020.101272
  • 10. Feng M, Tang BH, Liang S, Jiang X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Current Topics in Medicinal Chemistry 2016; 16: 1200-1216. doi: 10.2174/1568026615666150915111741
  • 11. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S et al. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proceedings of the National Academy of Sciences 2006; 103: 7829-7834. doi: 10.1073/pnas.0601643103
  • 12. Venkatachalam TK, Mao C, Uçkun FM. Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorganic and Medicinal Chemistry 2004; 12: 4275-4284. doi: 10.1016/j.bmc.2004.04.050
  • 13. Nishida CR, de Montellano PRO. Bioactivation of antituberculosis thioamide and thiourea prodrugs by bacterial and mammalian flavin monooxygenases. Chemico-Biological Interactions 2011; 192: 21-25. doi: 10.1016/j.cbi.2010.09.015
  • 14. Yıldız İN, Oruç Emre EE, Taşdemir D, Karaküçük İyidoğan A, Ulaşlı M et al. Design and synthesis of novel thioureas derived from 4‐(4‐ fluorophenoxy)aniline as anticancer agents. Journal of the Chinese Chemical Society 2017; 64: 321-330. doi: 10.1002/jccs.201600193
  • 15. Oliveira RB, Souza Fagundes EM, Soares PP, Andrade AA, Krettli AU et al. Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives. European Journal of Medicinal Chemistry 2007; 43: 1983-1988. doi: 10.1016/j.ejmech.2007.11.012
  • 16. Çelen A, Kaymakçıoğlu B, Gümrü S, Toklu H, Arıcıoğlu F. Synthesis and anticonvulsant activity of substituted thiourea derivatives. Marmara Pharmaceutical Journal 2011; 15: 43-47. doi: 10.12991/201115430
  • 17. Larik FA, Shah MS, Saeed A, Shah HS, Channar PA et al. New cholinesterase inhibitors for Alzheimer’s disease: Structure activity relationship, kinetics and molecular docking studies of 1-butanoyl-3-arylthiourea derivatives. International Journal of Biological Macromolecules 2018; 116: 144-150. doi: 10.1016/j.ijbiomac.2018.05.001
  • 18. Liu P, Shu C, Liu L, Huang Q, Peng Y. Design and synthesis of thiourea derivatives with sulfur-containing heterocyclic scaffolds as potential tyrosinase inhibitors. Bioorganic and Medicinal Chemistry 2016; 24: 1866-1871. doi: 10.1016/j.bmc.2016.03.013
  • 19. Naz S, Zahoor M, Umar MN, Alghamdi S, Khayam Sahibzada MU, et al. Synthesis, Characterization, and pharmacological evaluation of thiourea derivatives. Open Chemistry 2020; 18: 764-777. doi: 10.1515/chem-2020-0139
  • 20. Alcolea V, Plano D, Karelia DN, Palop JA, Amin S et al. Novel seleno- and thio-urea derivatives with potent in vitro activities against several cancer cell lines. European Journal of Medicinal Chemistry 2016; 113: 134-144. doi: 10.1016/j.ejmech.2016.02.042
  • 21. Mishra A, Batra S. Thiourea and guanidine derivatives as antimalarial and antimicrobial agents. Current Topics in Medicinal Chemistry 2013; 13: 2011-2025. doi: 10.2174/15680266113139990126
  • 22. Pattan S, Kedar M, Pattan J, Dengale S, Sanap M et al. Synthesis and evaluation of some novel 2,4-thiazolidinedione derivatives for antibacterial, antitubercular and antidiabetic activities. India Journal of Chemistry. 2012; 51: 1421-1425.
  • 23. Arden C, Petrie JL, Tudhope SJ, Al-Qanzi Z, Claydon AJ et al. Elevated glucose represses liver glucokinase and induces its regulatory protein to safeguard hepatic phosphate homeostasis. Diabetes 2011; 60: 3110-3120. doi: 10.2337/db11-0061
  • 24. Kulakov I, Nurkenov O, Akhmetova S, Seidakhmetova R, Zhambekov Z. Synthesis and antibacterial and antifungal activities of thiourea derivatives of the alkaloid anabasine. Pharmaceutical Chemistry Journal 2011; 45: 15-18. doi: 10.1007/s11094-011-0551-9
  • 25. Ganes, A. Biological activities of some pyrazoline derivatives. International Journal of Pharma and Bio Sciences 2013; 4: 727-733.
  • 26. Hasanen J, El-Deen I, El-Desoky R, Abdalla A. Synthesis of some nitrogen heterocycles and in vitro evaluation of their antimicrobial and antitumor activity. Research on Chemical Intermediates 2014; 40: 537-553. doi: 10.1007/s11164-012-0981-3
  • 27. Rivera A, Maldonado M, Rios-Motta J. A facile and efficient procedure for synthesis of new benzimidazole-2-thione derivatives. Molecules 2012; 17: 8578-8586. doi: 10.3390/molecules17078578
  • 28. Imran S, Taha M, Ismail NH, Fayyaz S, Khan KM et al. Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhyras II inhibitor. Bioorganic Chemistry 2015; 62: 83-93. doi: 10.1016/j.boorg.2015.08.001
  • 29. Choi J, Jee JG. Repositioning of thiourea-containing drugs as tyrosinase inhibitors. International Journal of Molecular Sciences 2015; 16: 28534-28548. doi: 10.3390/ijms161226114.
  • 30. Antunes S, Corre JP, Mikaty G, Douat C, Goossens PL et al. Effect of replacing main-chain ureas with thiourea and guanidinium surrogates on the bacterial activity of mebrane active oligourea foldamers. Bioorganic & Medicinal Chemistry 2017; 25: 4245-4252. doi: 10.1016/j. bmc.2017.04.040
  • 31. Suyoga, Vardhan D, Shantharam C, Suhas R, Sridhara M et al. Synthesis and urease inhibition studies of ureas and thioureas derived from amino acids conjugated heterocycle. International Journal of Chemistry and Pharmaceutical Sciences 2013; 4: 54-58.
  • 32. Liu J, Yang S, Li X, Fan H, Bhadury P et al. Synthesis and antiviral bioactivity of chiral thioureas containing leucine and phosphonate moieties. Molecules 2010; 15: 5112-5123. doi: 10.3390/molecules15085112
  • 33. Kojime, M. Syntheses and antincrobial properties of isothiocyanate derivatives. Journal of Pharmaceutical Science 1974; 63: 1801-1803. doi: 10.1002/jps.2600631135
  • 34. Mahachi TJ, Carlson RM, Poe DP. p-N,N-dimetilaminophenylisothiocyanate as an electro-chemical label for high-performance liquid chromatographic determination of amino acids. Journal of Chromatography 1984; 298: 279-288.
  • 35. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Pharmacology 1961; 7: 88-95. doi: 10.1016/0006-2952(61)90145-9
  • 36. Khatib S, Nerya O, Musa R, Shumel M, Tamir S, Vaya J. Chalcones as potent tyrosinase inhibitors: The importance of 2,4-disubstituted resorcinol moiety. Bioorganic and Medicinal Chemistry 2005; 13: 433-441. doi: 10.1016/j.bmc.2004.10.010
  • 37. Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 1967; 3: 971-974. doi: 10.1021/ ac60252a045
  • 38. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry 2000; 43: 3714-3717. doi: 10.1021/jm000942e
  • 39. Sıcak Y, Oruç-Emre EE, Öztürk M, Taşkın-Tok T, Karaküçük-Iyidoğan A. Novel fluorine-containing chiral hydrazide-hydrazones: Design, synthesis, structural elucidation, antioxidant and anticholinesterase activity, and in silico studies. Chirality 2019; 31: 603-615. doi: 10.1002/ chir.23102
  • 40. Hou T, Xu X. Recent development and application of virtual screening in drug discovery: an overview. Current Pharmaceutical Design 2004; 10: 1011-1033. doi: 10.2174/1381612043452721
  • 41. Tatar E, Karakuş S, Küçükgüzel ŞG, Öktem-Okullu S, Ünübol N et al. Design, synthesis, and molecular docking studies of a conjugated thiadiazole–thiourea scaffold as antituberculosis agents. Biological and Pharmaceutical Bulletin 2016; 39: 502-515. doi: 10.1248/bpb. b15-00698
  • 42. Shweta M, Rashmi D. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using swissadme predictor. Journal of Drug Delivery and Therapeutics 2019; 9: 366-36927. doi: 10.22270/jddt.v9i2-s.2710
  • 43. Ferreira LL, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discovery 2019, 24, 1157-1165. doi: 10.1016/j. drudis.2019.03.015
  • 44. Şenkardeş S, Han Mİ, Kulabaş N, Abbak M, Çevik Ö et al. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors. Molecular Diversity 2020; 24: 673-689. doi: 10.1007/s11030-019-09974-z
  • 45. Daina A, Zoete V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. Chem Med Chem 2016; 11: 1117-1121. doi: 10.1002/cmdc.201600182
  • 46. Saini R, Saxena AK. The structural hybrids of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease: A review. Journal of Alzheimer’s and Neurodegenerative Diseases 2018; 4: 1-25. doi: 10.24966/AND-9608/100015
  • 47. Bari WU, Zahoor M, Zeb A, Khan I, Nazir Y et al. Anticholinesterase, antioxidant potentials, and molecular docking studies of isolated bioactive compounds from Grewia optiva. International Journal of Food Properties 2019; 22: 1386–1396. doi: 10.1080/10942912.2019.1650763
  • 48. Cavalieri EL, Li KM, Balu N, Saeed M, Devanesan P et al. Catechol ortho-quinones: The electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 2002; 23; 1071-1077. doi: 10.1093/carcin/23.6.1071
  • 49. Asanuma M, Miyazaki I, Ogawa N. Dopamine or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotoxicity Research 2003; 5: 165-176. doi: 10.1007/BF03033137
  • 50. Pan T, Li X, Jankovic J. The association between Parkinson’s disease and melanoma. International Journal of Cancer 2011; 128: 2251-2260. doi: 10.1002/ijc.25912
  • 51. Sendoel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 2010; 465: 577-583. doi: 10.1038/nature09141
  • 52. Chang TS. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 2009; 10: 2440-2475. doi: 10.3390/ ijms10062440
  • 53. Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences 2005; 62: 1707-1723. doi: 10.1007/s00018-005-5054-y
  • 54. Ubeid AA, Do S, Nye C, Hantash BM. Potent low toxicity inhibition of human melanogenesis by novel indole-containing octapeptides. Biochimica et Biophysica Acta 2012; 1820: 1481-1489. doi: 10.1016/j.bbagen.2012.05.003
  • 55. Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmentingagents: An updated review on biological, chemical and clinical aspects. Pigment Cell and Melanoma Research 2006; 19: 550-571. doi: 10.1111/j.1600-0749.2006.00334.x
  • 56. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A. Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology 2006; 100: 219-232. doi: 10.1111/j.1365-2672.2006.02866.x
  • 57. Mobley HL, Hausinger RP. Ureases: significance, regulation, and molecular characterization. Microbiological Reviews 1989; 53: 85-108. doi: 10.1128/mr.53.1.85-108.1989
  • 58. Karplus PA, Pearson MA, Hausinger RP. 70 Years of Crystalline Urease: What Have We Learned? Accounts of Chemical Research 1997; 30: 330-337. doi: 10.1021/ar960022j
  • 59. Collins CM, D’Orazio SEF. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Molecular Microbiology 1993; 9: 907-913. doi: 10.1111/j.1365-2958.1993.tb01220.x
  • 60. Mobley HLT, Island MD, Hausinger RP. Molecular biology of microbial ureases. Microbiological Reviews 1995; 59: 451-480. doi: 10.1128/ mr.59.3.451-480.1995
  • 61. Samtoy B, DeBeukelaer MM. Ammonia encephalopathy secondary to urinary tract infection with proteuis mirabilis. Pediatrics 1980; 65: 294-297.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis of some new isoxazole compounds and their biological tyrosinase and antioxidant activities

Seda FANDAKLI

Microstructure and ionic conductivity investigation of samarium doped ceria $(Sm_{0.2}Ce_{0.8}O_{1.9})$ electrolytes prepared by the templating methods

Vedat SARIBOĞA, M.A. Faruk ÖKSÜZÖMER, Dilara GÜÇTAŞ

Induction of lutein production in Scenedesmus obliquus under different culture conditions prior to its semipreparative isolation

Ayşegül ERDOĞAN, Ayça Büşra KARATAŞ, Zeliha DEMİREL, Meltem CONK DALAY

Catalytic activity of ethylbenzene with product selectivity by gold nanoparticles supported on zinc oxide

Azman MAAMOR, H.N.M. Ekramul MAHMUD, Wan Jefrey BASIRUN, Iskandar ABDULLAH, Afiq ANWAR

Development and validation of a new RP-HPLC method for organic explosive compounds

Salih Murat ÜNSAL, Emre ERKAN

Microwave-assisted rapid conjugation of horseradish peroxidase-dextran aldehyde with Schiff base reaction and decolorization of Reactive Blue 19

Murat TOPUZOĞULLARI, Mithat ÇELEBİ, Zafer Ömer ÖZDEMİR

Electroanalytical investigation and voltammetric quantification of antiviral drug favipiravir in the pharmaceutical formulation and urine sample using a glassy carbon electrode in anionic surfactant media

Zühre ŞENTÜRK, Zeynep AKÇA, Yavuz YARDIM, Hande İzem ÖZOK

A new study of dynamic mechanical analysis and the microstructure of polyurethane foams filled

Noureddine BOUMDOUHA, Achraf BOUDIAF, Zitouni SAFIDINE

Adsorption of dimethyl disulfide onto activated carbon cloth

Firdevs MERT SİVRİ, Numan HODA, Leyla BUDAMA AKPOLAT, Ayhan TOPUZ, Emrah EROĞLU

Removal of Cd2+ metal ions from aqueous solutions by Na-alginate-containing composite biosorbent

Ramazan DONAT