Biological potential of copper complexes: a review

Biological potential of copper complexes: a review

This review comprises the inorganic compounds particularly metal coordinated complexes, as drugs play a relevant role in medicinal chemistry. It has been observed that copper complexes are potentially attractive as medicinal importance. In this review, the most remarkable achievements of copper complexes undertaken over the past few decades as antimicrobial, antioxidant, enzyme inhibition activity, and anti-cancer agents are discussed. This work was motivated by the observation that no comprehensive surveys of the diversity of biological activities of copper complexes were available in the literature.

___

  • 1. Sessler JL, Doctrow SR, McMurry TJ, Lippard SJ, editors. Medicinal Inorganic Chemistry. American Chemical Society. 2005. doi: abs/10.1021/bk-2005-0903
  • 2. Fricker SP. Medicinal chemistry and pharmacology of gold compounds. Transition Metal Chemistry 1996; 21 (4): 377-383.
  • 3. Roat-Malone RM. Bioinorganic chemistry: a short course. John Wiley & Sons; 2007.
  • 4. Ghica ME, Brett AM. Electrochemical oxidation of rutin. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2005; 17 (4): 313-318. doi: 10.1002/elan.200403100
  • 5. Rafique S, Idrees M, Nasim A, Akbar H, Athar A. Biotechnology and Molecular Biology Reviews 2010; (5): 38-44. doi: 10.5897/ BMBR2010.0003
  • 6. Hariprasath K, Deepthi B, Babu IS, Venkatesh P, Sharfudeen S et al. Metal complexes in drug research-a review. Journal of Chemical and Pharmaceutical Research 2010; 2 (4): 496-499.
  • 7. Creaven BS, Duff B, Egan DA, Kavanagh K, Rosair G et al. Anticancer and antifungal activity of copper (II) complexes of quinolin-2 (1H)- one-derived Schiff bases. Inorganica Chimica Acta 2010; 363 (14): 4048-4058. doi: 10.1016/j.ica.2010.08.009
  • 8. Valent A, Melnik M, Hudecová D, Dudová B, Kivekäs R et al. Copper (II) salicylideneglycinate complexes as potential antimicrobial agents. Inorganica Chimica Acta 2002; 340: 15-20. doi: 10.1016/S0020-1693(02)01062-9
  • 9. Ibrahim M, Wang F, Lou MM, Xie GL, Li B et al. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria. Journal of Bioscience and Bioengineering 2011; 112 (6): 570-576. doi: 10.1016/j.jbiosc.2011.08.017
  • 10. Franz KJ. Application of inorganic chemistry for non-cancer therapeutics. Dalton Transactions 2012; 41 (21): 6333-6340. doi: 10.1039/ C2DT90061K
  • 11. Jabłoński A, Matczak K, Koceva-Chyła A, Durka K, Steverding D et al. Cymantrenyl-nucleobases: synthesis, anticancer, antitrypanosomal and antimicrobial activity studies. Molecules 2017; 22 (12): 222-230. doi: 10.3390/molecules22122220
  • 12. Bruijnincx PC, Sadler PJ. Cobalt derivatives as promising therapeutic agents. Current Opinion in Chemical Biology (2008); 12: 197. doi: 10.1016/j.cbpa.2012.11.019
  • 13. Ameen M, Gilani SR, Naseer A, Shoukat I, Ali SD. Synthesis, characterization and antibacterial activities of novel mixed ligands (azo anils and oxalate ion) copper (II) complexes. Bulletin of the Chemical Society of Ethiopia 2015; 29 (3): 399-406. doi: 10.4314/bcse.v29i3.7
  • 14. Nirmal R, Meenakshi K, Shanmugapandiyan P, Prakash CR. Synthesis pharmacological evaluation of novel Schiff base analogues of 3-(4-amino) phenylimino) 5-fluoroindolin-2-one. Journal of Young Pharmacists 2010; 2 (2): 162-168. doi: 10.4103/0975-1483.63162
  • 15. Arjmand F, Mohani B, Ahmad S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex. European Journal of Medicinal Chemistry 2005; 40 (11): 1103-1110. doi: 10.1016/j.ejmech.2005.05.005
  • 16. Wang PH, Keck JG, Lien EJ, Lai MM. Design, synthesis, testing, and quantitative structure-activity relationship analysis of substituted salicylaldehyde Schiff bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus. Journal of medicinal chemistry. 1990; 33 (2): 608-614. doi: 10.1021/jm00164a023
  • 17. Pontiki E, Hadjipavlou-Litina D, Chaviara AT. Evaluation of anti-inflammatory and antioxidant activities of copper (II) Schiff mono-base and copper (II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole. Journal of Enzyme Inhibition and Medicinal Chemistry 2008; 23 (6): 1011-1017.
  • 18. Kalia SB, Kaushal G, Kumar M, Cameotra SS, Sharma A et al. Antimicrobial and toxicological studies of some metal complexes of 4-methylpiperazine-1-carbodithioate and phenanthroline mixed ligands. Brazilian Journal of Microbiology 2009; 40 (4): 916-922.
  • 19. Pal S, Pushparaju J, Sangeetha NR, Pal S. Copper (II) complexes containing a $CuN_4O_2$ coordination sphere assembled via pyridineimine-amide coordination: Synthesis, structure and properties. Transition Metal Chemistry 2000; 25 (5): 529-533. doi: 10.1016/0277- 5387(95)00403-3
  • 20. Chan S, Wong WT. 10. Ruthenium 1992. Coordination Chemistry Reviews 1995; 138: 219-296. doi: 10.1016/0010-8545(95)90581-R
  • 21. Liang F, Wang P, Zhou X, Li T, Li Z et al. Nickle (II) and cobalt (II) complexes of hydroxyl-substituted triazamacrocyclic ligand as potential antitumor agents. Bioorganic & Medicinal Chemistry Letters 2004; 14 (8): 1901-1904. doi: 10.1016/j.bmcl.2004.01.089
  • 22. Khan MM. Spectroscopic and physico-chemical characterization of Ir (I) and Ru (III) complexes of 32-membered unsymmetrical dinucleating macrocyclic ligand. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2014; 78 (1): 257-263.
  • 23. Cory JG, Cory AH, Rappa G, Lorico A, Mao-Chin L et al. Inhibitors of ribonucleotide reductase: Comparative effects of amino-and hydroxy-substituted pyridine-2-carboxaldehydethiosemicarbazones. Biochemical Pharmacology 1994; 48 (2): 335-344.
  • 24. Raja DS, Bhuvanesh NS, Natarajan K. Biological evaluation of a novel water-soluble sulphur bridged binuclear copper (II) thiosemicarbazone complex. European Journal Of Medicinal Chemistry 2011; 46 (9): 4584-4594. doi: 10.1016/j.ejmech.2011.07.038
  • 25. Karatepe M, Karatas F. Antioxidant, pro‐oxidant effect of the thiosemicarbazone derivative Schiff base (4‐(1‐phenylmethylcyclobutane‐3‐ yl)-2-(2‐hydroxybenzylidenehydrazino) thiazole) and its metal complexes on rats. Cell Biochemistry and Function 2006; 24 (6): 547-554. doi: 10.1002/cbf.1266
  • 26. Jaishree V, Ramdas N, Sachin J, Ramesh B. In vitro antioxidant properties of new thiazole derivatives. Journal of Saudi Chemical Society 2012; 16 (4): 371-376. doi: 10.1016/j.jscs.2011.02.007
  • 27. Qi YY, Gan Q, Liu YX, Xiong YH, Mao ZW et al. Two new Cu (II) dipeptide complexes based on 5-methyl-2-(2′-pyridyl) benzimidazole as potential antimicrobial and anticancer drugs: Special exploration of their possible anticancer mechanism. European Journal of Medicinal Chemistry 2018; 154: 220-232. doi: 10.1016/j.ejmech.2018.05.023
  • 28. dos Santos Silva TD, Bomfim LM, da Cruz Rodrigues AC, Dias RB, Sales CB, Rocha CA et al. Anti-liver cancer activity in vitro and in vivo induced by 2-pyridyl 2, 3-thiazole derivatives. Toxicology and Applied Pharmacology 2017; 329: 212-223. doi: 10.1016/j.taap.2017.06.003
  • 29. Singh K, Barwa MS, Tyagi P. Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1, 2, 4-triazine. European Journal of Medicinal Chemistry. 2007; 42 (3): 394-402. doi: 10.1016/j.taap.2017.06.003
  • 30. Lv J, Liu T, Cai S, Wang X, Liu L et al. Synthesis, structure and biological activity of cobalt (II) and copper (II) complexes of valine-derived schiff bases. Journal of Inorganic Biochemistry 2006; 100 (11): 1888-1896. doi: 10.1016/j.jinorgbio.2006.07.014
  • 31. Da Silva JF, Williams RJ. The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press; 2001. doi: 10.1016/0076-6879(94)34078-1
  • 32. Burkitt MJ. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, α-tocopherol, thiols, and ceruloplasmin. Archives of Biochemistry and Biophysics 2001; 394 (1): 117-135.
  • 33. Braga D, Grepioni F, Desiraju GR. Crystal engineering and organometallic architecture. Chemical Reviews 1998; 98 (4): 1375-1406. doi: 10.1021/cr960091b
  • 34. Cortés P, Atria AM, Contreras M, Garland MT, Peña O et al. Magnetic properties and antibacterial activity of tetranuclear copper complexes bridged by oxo group. Journal of the Chilean Chemical Society 2006; 51 (3): 957-960.
  • 35. Viossat B, Daran JC, Savouret G, Morgant G, Greenaway FT et al. Low-temperature (180 K) crystal structure, electron paramagnetic resonance spectroscopy, and propitious anticonvulsant activities of CuII2 (aspirinate) 4 (DMF) 2 and other CuII2 (aspirinate) 4 chelates. Journal of Inorganic Biochemistry 2003; 96 (2-3): 375-385. doi: 10.1016/S0162-0134(03)00153-3
  • 36. Navarro M, Cisneros-Fajardo EJ, Lehmann T, Sánchez-Delgado RA, Atencio R et al. Toward a Novel Metal-Based Chemotherapy against Tropical Diseases. 6. Synthesis and Characterization of New Copper (II) and Gold (I) Clotrimazole and Ketoconazole Complexes and Evaluation of Their Activity against Trypanosoma c ruzi. Inorganic Chemistry 2001; 40 (27): 6879-6884. doi: 10.1021/ic0103087
  • 37. Bontchev PR, Pantcheva IN, Todorov T, Mehandjiev DR, Savov NS. Complexation of the antihypertensive drug oxprenolol with copper (II). Journal of Inorganic Biochemistry 2001; 83 (1): 25-30. doi: 10.1016/S0162-0134(00)00126-4
  • 38. Marzano C, Pellei M, Tisato F, Santini C. Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry 2009; 9 (2): 185-211. doi: 10.2174/187152009787313837
  • 39. Santini C, Pellei M, Gandin V, Porchia M, Tisato F et al. Advances in copper complexes as anticancer agents. Chemical Reviews 2014; 114 (1): 815-862. doi: 10.1021/cr400135x
  • 40. Ibrahim MK, Taghour MS, Metwaly AM, Belal A, Mehany AB et al. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. European Journal of Medicinal Chemistry 2018; 155: 117-134. doi: 10.1016/j.ejmech.2018.06.004
  • 41. Shoair AF, El-Bindary AA, El-Ghamaz NA, Rezk GN. Synthesis, characterization, DNA binding and antitumor activities of Cu (II) complexes. Journal of Molecular Liquids 2018; 269: 619-638. doi: 10.1016/j.molliq.2018.08.075
  • 42. Qi J, Yao Q, Tian L, Wang Y. Piperidylthiosemicarbazones Cu (II) complexes with a high anticancer activity by catalyzing hydrogen peroxide to degrade DNA and promote apoptosis. European Journal of Medicinal Chemistry. 2018; 158: 853-62. doi: 10.1016/j.ejmech.2018.09.034
  • 43. Balakrishna MS, Suresh D, Rai A, Mague JT, Panda D. Dinuclear copper (I) complexes containing cyclodiphosphazane derivatives and pyridyl ligands: synthesis, structural studies, and antiproliferative activity toward human cervical and breast cancer cells. Inorganic Chemistry. 2010; 49 (19): 8790-8801. doi: 10.1021/ic100944d
  • 44. Patel MN, Gandhi DS, Parmar PA. DNA interaction and in-vitro antibacterial studies of fluoroquinolone-based platinum (II) complexes. Inorganic Chemistry Communications. 2012; 15: 248-251. doi: 10.1016/j.inoche.2011.10.037
  • 45. Gaynor D, Griffith DM. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Transactions 2012; 41 (43): 13239-13257.
  • 46. Guo Z, Sadler PJ. Metals in medicine. Angewandte Chemie International Edition 1999; 38 (11): 1512-1531. doi: 10.1002/(SICI)1521- 3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-Y
  • 47. Refat MS, El-Hawary WF, Mohamed MA. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostructural form on the efficiency of antibiotic therapy “norfloxacin drug”. Journal of Molecular Structure 2012; 1013: 45-54. doi: 10.1016/j. molstruc.2011.12.010
  • 48. Uivarosi V, Badea M, Olar R, Marinescu D, Nicolescu TO et.al. Thermal degradation behavior of some ruthenium complexes with fluoroquinolone derivatives as potential antitumor agents. Journal of Thermal Analysis and Calorimetry 2011; 105 (2): 645-650. doi: 10.1007/s10973-010-1222-x
  • 49. Keppler BK, editor. Metal complexes in cancer chemotherapy. VCH Publishers; 1993.
  • 50. Jones CJ, Thornback JR. Medicinal Applications of Coordination Chemistry. Platinum Metals Review 2008; 52 (1): 21-29.
  • 51. Gouvea LR, Garcia LS, Lachter DR, Nunes PR, de Castro Pereira F et al. A typical fluoroquinolone gold (III) chelates as potential anticancer agents: relevance of DNA and protein interactions for their mechanism of action. European Journal of Medicinal Chemistry 2012; 55: 67- 73. doi: 10.1016/j.ejmech.2012.07.004
  • 52. Alessio E, editor. Bioinorganic medicinal chemistry. John Wiley & Sons; 2011.
  • 53. Sadeek SA, El-Shwiniy WH, Zordok WA, El-Didamony AM. Synthesis, spectroscopic, thermal and biological activity investigation of new Y (ΙΙΙ) and Pd (ΙΙ) norfloxacin complexes. Journal of Argentine Chemical Society 2009; 97: 128-148.
  • 54. Sigel H, Gemant A. Metal Ions in Biological Systems, Volume 9: Amino acids and Derivatives as Ambivalent Ligands. Journal of The Electrochemical Society 1980; 127 (5): 215C.
  • 55. Bonaccorso C, Marzo T, La Mendola D. Biological applications of thiocarbohydrazones and their metal complexes: A perspective review. Pharmaceuticals 2020; 13 (1): 4. doi: 10.3390/ph13010004
  • 56. Hossain MS, Zakaria CM, Kudrat-E-Zahan M. Metal complexes as potential antimicrobial agent: a review. American Journal of Heterocyclic Chemistry 2018; 4 (1): 1. doi: 10.11648/j.ajhc.20180401.11
  • 57. kh Warad I. Synthesis of V-shaped Schiff base ligand of type (N1E, N2E)-N1, N2-bis (pyridin-2-yl-methylene)-ethane-1, 2-diamine, DFT/ XRD/HAS analysis. Moroccan Journal of Chemistry 2020; 8 (3): 8-13. doi: 10.4831/IMIST.PRSM/morjchem-v8i4.2
  • 58. Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W et al. Anticancer activity of metal complexes: involvement of redox processes. European Journal of Cancer 2011; 15; 1085. doi: 10.1089/ars.2010.3663
  • 59. Colina-Vegas L, Villarreal W, Navarro M, de Oliveira CR, Graminha AE et al. Cytotoxicity of Ru (II) piano–stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: Interactions with DNA and BSA. Journal of Inorganic Biochemistry 2015; 153: 150-161. doi: 10.1016/j.jinorgbio.2015.07.016
  • 60. Zou T, Liu J, Lum CT, Ma C, Chan RC et al. Luminescent Cyclometalated Platinum (II) Complex Forms Emissive Intercalating Adducts with Double‐Stranded DNA and RNA: Differential Emissions and Anticancer Activities. Angewandte Chemie 2014; 126 (38): 10283- 10287. doi: 10.1002/ange.201405384
  • 61. Sun RW, Che CM. The anti-cancer properties of gold (III) compounds with dianionic porphyrin and tetradentate ligands. Coordination Chemistry Reviews 2009; 253 (11-12): 1682-1691. doi: 10.1016/j.ccr.2009.02.017
  • 62. Slassi S, El‐Ghayoury A, Aarjane M, Yamni K, Amine A. New copper (II) and zinc (II) complexes based on azo Schiff base ligand: Synthesis, crystal structure, photoisomerization study and antibacterial activity. Applied Organometallic Chemistry 2020; 34 (4): e5503. doi: 10.1002/aoc.5503
  • 63. Kasare MS, Dhavan PP, Jadhav BL, Pawar SD. In-vitro antibacterial activity of Ni (II), Cu (II), and Zn (II) complexes incorporating new azo-azomethine ligand possessing excellent antioxidant, anti-inflammatory activity and protective effect of free radicals against plasmid DNA. Synthetic Communications 2019; 49 (23): 3311-3323. doi: 10.1080/00397911.2019.1663213
  • 64. Al-Resayes SI, Shakir M, Shahid M, Azam M, Khan AU. Synthesis, spectroscopic characterization in vitro antimicrobial studies of Schiff base ligand, H2L derived from glyoxalic acid and 1,8-diaminonaphthalene and its Co(II), Ni(II), Co(II) and Zn(II) complexes. Arabian Journal of Chemistry 2016; 9 (3): 335-343. doi: 10.1016/j.arabjc.2011.11.004
  • 65. Al-Resayes SI, Shakir M, Shahid N, Azam M, Khan AU. Synthesis, spectroscopic characterization and in vitro antimicrobial studies of Schiff base ligand, H2L derived from glyoxalic acid and 1, 8-diaminonaphthalene and its Co (II), Ni (II), Cu (II) and Zn (II) complexes. Arabian Journal of Chemistry 2016; 9 (3): 335-343. doi: 10.1155/2011/493942
  • 66. Anitha C, Sumathi S, Tharmaraj P, Sheela CD. Synthesis, characterization, and biological activity of some transition metal complexes derived from novel hydrazone azo schiff base ligand. International Journal of Inorganic Chemistry 2011.
  • 67. Azam M, Al-Resayes SI, Wabaidur SM, Altaf M, Chaurasia B et al. Synthesis, structural characterization and antimicrobial activity of Cu (II) and Fe (III) complexes incorporating azo-azomethine ligand. Molecules 2018; 23 (4): 813. doi: 10.3390/molecules22040650
  • 68. Pahonțu E, Ilieș DC, Shova S, Oprean C, Păunescu V et al. Synthesis, characterization, antimicrobial and antiproliferative activity evaluation of Cu (II), Co (II), Zn (II), Ni (II) and Pt (II) complexes with isoniazid-derived compound. Molecules 2017; 22 (4): 650. doi: 10.4314/bcse. v29i3.7
  • 69. Ameen M, Gilani SR, Naseer A, Shoukat I, Ali SD. Synthesis, characterization and antibacterial activities of novel mixed ligands (azo anils and oxalate ion) copper (II) complexes. Bulletin of the Chemical Society of Ethiopia 2015; 29 (3): 399-406.
  • 70. Dharmaraj N, Viswanathamurthi P, Natarajan K. Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Metal Chemistry 2001; 26 (1): 105-109. doi: 10.1016/j.arabjc.2011.11.004
  • 71. Al-Resayes SI, Shakir M, Shahid N, Azam M, Khan AU. Synthesis, spectroscopic characterization and in vitro antimicrobial studies of Schiff base ligand, H2L derived from glyoxalic acid and 1, 8-diaminonaphthalene and its Co (II), Ni (II), Cu (II) and Zn (II) complexes. Arabian Journal of Chemistry 2016; 9 (3): 335-343. doi: 10.1016/S0277-5387(99)00309-5
  • 72. Bermejo E, Carballo R, Castiñeiras A, Dominguez R, Maichle-Mössmer C et al. Synthesis, characterization and antifungal activity of group 12 metal complexes of 2-acetylpyridine-4N-ethylthiosemicarbazone (H4EL) and 2-acetylpyridine-N-oxide-4N-ethylthiosemicarbazone (H4ELO). Polyhedron 1999; 18 (27): 3695-3702. doi: 10.1080/1475636031000071817
  • 73. Chohan ZH, Scozzafava A, Supuran CT. Zinc complexes of benzothiazole-derived Schiff bases with antibacterial activity. Journal of Enzyme Inhibition and Medicinal Chemistry 2003; 18 (3): 259-263. doi: 10.1016/j.heliyon. 2019.e01687
  • 74. Balakrishnan S, Duraisamy S, Kasi M, Kandasamy S, Sarkar R et al. Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands. Heliyon 2019; 5 (5): e01687. doi: 10.1155/2016/9672451
  • 75. Ejidike IP, Ajibade PA. Synthesis, characterization, anticancer, and antioxidant studies of Ru (III) complexes of monobasic tridentate Schiff bases. Bioinorganic Chemistry and Applications 2016.
  • 76. Tweedy BG. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 1964; 55: 910-914.
  • 77. Raman N, Joseph J. Novel metal-based antimicrobial agents of copper (II) complexes: Synthesis, spectral characterization and DNA interaction study. Russian Journal of Inorganic Chemistry 2010; 55 (7): 1064-1074. doi: 10.1016/j.jscs.2011.11.020
  • 78. Chandraleka S, Ramya K, Chandramohan G, Dhanasekaran D, Priyadharshini A et al. Antimicrobial mechanism of copper (II) 1, 10-phenanthroline and 2, 2′-bipyridyl complex on bacterial and fungal pathogens. Journal of Saudi Chemical Society 2014; 18 (6): 953- 962. doi: 10.1080/10426507.2017.1417294
  • 79. Zeynizadeh B, Sorkhabi S. Fast and efficient method for Silylation of alcohols and phenols with HMDS in the presence of bis-thiourea complexes of cobalt, nickel, copper and zinc chlorides. Phosphorus, Sulfur, and Silicon and the Related Elements 2018; 193 (3): 127-35. doi: 10.1016/j.bmcl.2014.02.044
  • 80. Mishra A, Batchu H, Srivastava K, Singh P, Shukla PK et al. Synthesis and evaluation of new diaryl ether and quinoline hybrids as potential antiplasmodial and antimicrobial agents. Bioorganic & Medicinal Chemistry Letters 2014; 24 (7): 1719-1723.
  • 81. Sridhar G, Mohammed Bilal I, Easwaramoorthy D, Kutti Rani S, Siva Kumar B et al. Synthesis, characterization and antimicrobial activities of copper, nickel, cobalt, chromium complexes derived from (Z)-4-Fluoro-N-(2, 7-dimethylhept-6-enylidene) benzenamine. Journal of the Brazilian Chemical Society 2017; 28: 756-767. doi: 10.3390/molecules25040951
  • 82. Abendrot M, Chęcińska L, Kusz J, Lisowska K, Zawadzka K et al. Zinc (II) complexes with amino acids for potential use in dermatology: Synthesis, crystal structures, and antibacterial activity. Molecules 2020; 25 (4): 951-956.
  • 83. Atria A, Cortes-Cortes P, Garland MT, Baggio R, Morales K et al. X-ray studies and antibacterial activity in copper and cobalt complexes with imidazole derivative ligands. Journal of the Chilean Chemical Society 2011; 56 (3): 786-792.
  • 84. Tadele KT, Tsega TW. Schiff Bases and their metal complexes as potential anticancer candidates: A review of recent works. Anti-Cancer Agents in Medicinal Chemistry 2019; 19 (15): 1786-1795. doi: 10.1111/jcmm.12508
  • 85. Pahontu E, Julea F, Rosu T, Purcarea V, Chumakov Y et al. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. Journal of Cellular and Molecular Medicine 2015; 19 (4): 865-878. doi: 10.1080/16583655.2019.1592316
  • 86. Nazirkar B, Mandewale M, Yamgar R. Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands. Journal of Taibah University for Science 2019; 13 (1): 440-449.
  • 87. Selimović E, Jeremić S, Ličina B, Soldatović T. Kinetics, DFT study and antibacterial activity of zinc (II) and copper (II) terpyridine complexes. Journal of the Mexican Chemical Society. 2018; 62 (1): 1-18. doi: 10.29356/jmcs.v62i1.576
  • 88. Justina MI, Olukemi BA, Sunday O. Study on “Synthesis, Characterization of Nanosized Copper (II) Complex and its Antimicrobial Activities”. ChemXpress 2018; 11 (2): 136. doi: 10.1016/j.molstruc.2014.01.028
  • 89. J. Joseph, G.B. Janaki. Journal of Molecular Structure (2014); 1063: 160. doi: 10.1155/2018/2530851
  • 90. Katugampala S, Perera IC, Nanayakkara C, Perera T. Synthesis, characterization, and antimicrobial activity of novel sulfonated coppertriazine complexes. Bioinorganic Chemistry and Applications. 2018 Aug 29.
  • 91. Yapati H, Devineni SR, Chirumamilla S, Kalluru S. Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo [d] thiazol-2-yl) thiourea. Journal of Chemical Sciences 2016; 128 (1): 43-51. doi: 2298/JSC120325099K
  • 92. Reddy KH, Lee SM, Seshaiah K, Babu RK. Synthesis, characterization of thiosemicarabzone metal complexes and antioxidant activity in different in vitro model systems. Journal of the Serbian Chemical Society 2013; 78 (2): 229-40. doi: 10.3329/dujps. v16i2.35254
  • 93. Sukul A, Chowdhury S, Poddar SK, Saha SK, Rahman SA. A comprehensive evaluation of peripheral analgesic and antipyretic activities of divalent metal complexes of indomethacin. Dhaka University Journal of Pharmaceutical Sciences 2017; 16 (2): 173-178.
  • 94. Al-Amiery AA, Kadhum AA, Mohamad AB. Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes. Bioinorganic Chemistry and Applications 2012. doi: 10.1016/j.poly.2004.09.004
  • 95. Kabeer H, Hanif S, Arsalan A, Asmat S, Younus H et al. Structural-dependent N, O-donor imine-appended Cu (II)/Zn (II) complexes: Synthesis, spectral, and in vitro pharmacological assessment. ACS Omega 2020; 5 (2): 1229-1245. doi: 10.1021/acsomega.9b03762
  • 96. John RP, Sreekanth A, Rajakannan V, Ajith TA, Kurup MP. New copper (II) complexes of 2-hydroxyacetophenone N (4)-substituted thiosemicarbazones and polypyridyl co-ligands: structural, electrochemical and antimicrobial studies. Polyhedron 2004; 23 (16): 2549- 2559. doi: 10.1016/j.poly.2013.11.021
  • 97. Omer MA, Liu JC, Deng WT, Jin NZ. Syntheses, crystal structures and antioxidant properties of four complexes derived from a new Schiff base ligand (N1E, N2E)-N1, N2-bis (1-(pyrazin-2-yl) ethylidene) ethane-1, 2 diamines. Polyhedron 2014; 69: 10-14. doi: 10.1016/j. molstruc.2017.05.127
  • 98. Shabbir M, Akhter Z, Ismail H, Mirza B. Synthetic bioactive novel ether-based Schiff bases and their copper (II) complexes. Journal of Molecular Structure 2017; 1146: 57-61. doi: 10.1080/00958972.2019.1638510
  • 99. Alhafez M, Kheder F, Aljoubbeh M. Synthesis, characterization and antioxidant activity of EGCG complexes with copper and zinc ions. Journal of Coordination Chemistry 2019; 72 (14): 2337-2350.
  • 100. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics 2009; 53 (2): 75-100. doi: 10.1179/135100004225003897
  • 101. Ejidike IP, Ajibade PA. Synthesis, characterization and biological studies of metal (II) complexes of (3E)-3-[(2-{(E)-[1-(2, 4-dihydroxyphenyl) ethylidene] amino} ethyl) imino]-1-phenylbutan-1-one Schiff base. Molecules 2015; 20 (6): 9788-9802.
  • 102. Janaki GB, Raj XJ. Antioxidant and catalytic activity of effective curcumin based copper complexes of 2-aminobenzothiazole derivatives. International Journal of Applied Engineering Research 2018; 13 (10): 8081-8090. doi: 10.3390/molecules20069788
  • 103. Schwendt G, Glasnov T. Intensified synthesis of [3, 4-d] triazole-fused chromenes, coumarins, and quinolones. Monatshefte für ChemieChemical Monthly 2017; 148 (1): 69-75. doi: 10.4067/S0717-97072011000400019
  • 104. Choudhary A, Sharma R, Nagar M, Mohsin M, Meena HS. Synthesis, characterization and antioxidant activity of some transition metal complexes with terpenoid derivatives. Journal of the Chilean Chemical Society 2011; 56 (4): 911-917.
  • 105. Slassi S, Fix-Tailler A, Larcher G, Amine A, El-Ghayoury A. Imidazole and azo-based schiff bases ligands as highly active antifungal and antioxidant components. Heteroatom Chemistry 2019; 3: 2019. doi: 10.1155/2019/6862170
  • 106. Gulcan M, Özdemir S, Dündar A, Ispir E, Kurtoğlu M. Mononuclear Complexes Based on Pyrimidine Ring Azo Schiff‐Base Ligand: Synthesis, Characterization, Antioxidant, Antibacterial, and Thermal Investigations. Zeitschrift für anorganische and allgemeine Chemie 2014; 640 (8‐9): 1754-1762. doi: 10.1002/zaac.201400078
  • 107. Aburas NM, Stevanovic NR, Milcic MK, Lolic AD, Natic MM et al. Influence of the structure on the antioxidant activity of tetradentate schiff bases and their copper (II) complexes: possible mechanisms. Journal of the Brazilian Chemical Society 2013; 24 (8): 1322-1328. doi: 10.5935/0103-5053.20130167
  • 108. Jopp M, Becker J, Becker S, Miska A, Gandin V et al. Anticancer activity of a series of copper (II) complexes with tripodal ligands. European Journal of Medicinal Chemistry 2017; 132: 274-181. doi: 10.1016/j.ejmech.2017.03.01
  • 109. Ferrari MB, Bisceglie F, Pelosi G, Tarasconi P, Albertini R et al. Synthesis, characterization and biological activity of copper complexes with pyridoxal thiosemicarbazone derivatives. X-ray crystal structure of three dimeric complexes. Journal of Inorganic Biochemistry 2004; 98 (2): 301-312. doi: 10.1016/j.jinorgbio.2003.09.011
  • 110. El-Boraey HA. Coordination behavior of tetraaza [N4] ligand towards Co (II), Ni (II), Cu(II), Cu (I) and Pd (II) complexes: synthesis, spectroscopic characterization and anticancer activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012; 97: 255-262. doi: 10.1016/j.saa.2012.05.077
  • 111. Koňariková K, Perdikaris GA, Gbelcová H, Andrezálová L, Švéda M et al. Autophagy in MCF-7 cancer cells induced by copper complexes. Pharmacological Reports 2016; 68 (6): 1221-1224.
  • 112. Lee JH, Moon JH, Lee YJ, Park SY. SIRT1. A class III histone deacetylase, regulates LPS-induced inflammation in human keratinocytes and mediates the anti-inflammatory effects of hinokitiol. Journal of Investigative Dermatology 2017; 137 (6): 1257-1266. doi: 10.1016/j. jid.2016.11.044
  • 113. Mo X, Chen Z, Chu B, Liu D, Liang Y et al. Structure and anticancer activities of four Cu (II) complexes bearing tropolone. Metallomics 2019; 11 (11): 1952-1964. doi: 10.1039/c9mt00165d
  • 114. Wang W, Lee YA, Kim G, Kim SK, Lee GY et al. Oxidative DNA cleavage by Cu (II) complexes: Effect of periphery substituent groups. Journal of Inorganic Biochemistry 2015; 153: 143-149. doi: 10.1016/j.jinorgbio.2015.07.015
  • 115. Kacar S, Unver H, Sahinturk V. A mononuclear copper (II) complex containing benzimidazole and pyridyl ligands: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arabian Journal of Chemistry 2020; 13 (2): 4310-4323. doi: 10.1016/j.arabjc.2019.08.002
  • 116. Zhao X, Lee PP, Yan YK, Chu CK. Synthesis, crystal structures and cytotoxicities of some transition metal complexes with N-[2-{(pyridin2-ylmethylidene) amino} ethyl] acetamide. Journal of Inorganic Biochemistry 2007; 101 (2): 321-328. doi: 10.1016/j.jinorgbio.2006.10.005
  • 117. Ghanghas P, Choudhary A, Kumar D, Poonia K. Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications. Inorganic Chemistry Communications 2021; 130: 1087-1100. doi: 10.1016/j.inoche.2021.108710
  • 118. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry 2011; 54 (6): 1896-1902. doi: 10.1021/jm101541x
  • 119. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Research 2011; 71 (9): 3364-3376. doi: 10.1158/0008-5472.CAN-10-4261
  • 120. Kimball DB, Haley MM. Triazenes: a versatile tool in organic synthesis. Angewandte Chemie International Edition 2002; 41 (18): 3338- 3351. doi: 10.1002/1521-3773(20020916)41:18<3338::AID-ANIE3338>3.0.CO;2-7
  • 121. Canakci D, Koyuncu I, Lolak N, Durgun M, Akocak S et al. Synthesis and cytotoxic activities of novel copper and silver complexes of 1, 3-diaryltriazene-substituted sulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2019; 34 (1): 110-116. doi: 10.1080/14756366.2018.1530994
  • 122. Rahal N. Etude structurelle on méthode DFT des complexes des metaux de transition a Ligand Thiosemicarbazone 2020.
  • 123. González-Ballesteros N, Pérez-Álvarez D, Rodríguez-Argüelles MC, Henriques MS, Paixão JA et al. Synthesis, spectral characterization and X-ray crystallographic study of new copper (I) complexes. Antitumor activity in colon cancer. Polyhedron 2016; 119: 112-119. doi: 10.1016/j.poly.2016.08.023
  • 124. Mohammed FF, Hagar M, Parveen S, Alnoman RB, Ahmed HA et al. 2-(alkylthio)-3-(naphthalen-1-yl) quinazolin-4 (3 H)-ones: ultrasonic synthesis, DFT and molecular docking aspects. Polycyclic Aromatic Compounds 2021; 29: 1-5. doi: 10.1080/10406638.2021.1878245
  • 125. Chakraborty A, Dash SP, Panda AK, Acharyya R, Biswas A et al. Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu (I/II) complexes of thiosemicarbazone: special emphasis on their interactions with DNA. Dalton Transactions 2015; 44 (13): 6140-6157. doi: 10.1080/10406638.2021.1878245
  • 126. Selvakumaran N, Sandhiya L, Bhuvanesh NS, Senthilkumar K, Karvembu R. Structural diversity in aroylthiourea copper complexes–formation and biological evaluation of $[Cu (i)(μ-S) SCl]_2, cis-Cu (ii) S_2 O_2, trans-Cu (ii) S_2O_2 and Cu (i) S_3$ cores. New Journal of Chemistry 2016; 40 (6): 5401-5413. doi: 10.1039/C4DT03764B
  • 127. Kumar SM, Dhahagani K, Rajesh J, Anitha K, Chakkaravarthi G et al. Synthesis, structural analysis and cytotoxic effect of copper (II)- thiosemicarbazone complexes having heterocyclic bases: A selective naked eye sensor for F− and CN−. Polyhedron 2015; 85: 830-840. doi: 10.1016/j.poly.2014.09.044
  • 128. Subarkhan MM, Prabhu RN, Kumar RR, Ramesh R. Antiproliferative activity of cationic and neutral thiosemicarbazone copper (II) complexes. RSC Advances 2016; 6 (30): 25082-25093. doi: 10.1039/C5RA26071J
  • 129. Zhang Z, Bi C, Buac D, Fan Y, Zhang X et al. Organic cadmium complexes as proteasome inhibitors and apoptosis inducers in human breast cancer cells. Journal of Inorganic Biochemistry 2013; 123: 1-10. doi: 10.1016/j.jinorgbio.2013.02.004
  • 130. Zhang Z, Wang H, Wang Q, Yan M, Wang H et al. Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1, 10-phenanthroline. International Journal of Oncology 2016; 49 (2): 691-699. doi: 10.3892/ijo.2016.3542
  • 131. Wang X, Yan M, Wang Q, Wang H, Wang Z et al. In vitro DNA-binding, anti-oxidant and anticancer activity of indole-2-carboxylic acid dinuclear copper (II) complexes. Molecules 2017; 22 (1): 171-177. doi: 10.3390/molecules22010171
  • 132. Evans CW, Atkins C, Pathak A, Gilbert BE, Noah JW. Benzimidazole analogs inhibit respiratory syncytial virus G protein function. Antiviral Research 2015; 121: 31-38.
  • 133. Hussain A, AlAjmi MF, Rehman M, Amir S, Husain FM et al. Copper (II) complexes as potential anticancer and Nonsteroidal antiinflammatory agents: In vitro and in vivo studies. Scientific Reports 2019; 9 (1): 1-7.
  • 134. Hossain MS, Zakaria CM, Kudrat-E-Zahan M, Zaman B. Synthesis, spectral and thermal characterization of Cu (II) complexes with two new Schiff base ligand towards potential biological application. Der Chemica Sinica 2017; 8: 380-392.
  • 135. Wang F, Jiao P, Qi M, Frezza M, Dou QP et al. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Current Medicinal Chemistry 2010; 17 (25): 2685-2698. doi: 10.2174/092986710791859315
  • 136. Liu N, Liu C, Li X, Liao S, Song W et al. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases. Scientific Reports 2014; 4 (1): 1-3.
  • 137. Chen ZF, Tan MX, Liu LM, Liu YC, Wang HS et al. Cytotoxicity of the traditional chinese medicine (TCM) plumbagin in its copper chemistry. Dalton Transactions 2009; 48: 10824-10833. doi: 10.1039/B910133K
  • 138. Tardito S, Barilli A, Bassanetti I, Tegoni M, Bussolati O et al. Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. Journal of Medicinal Chemistry 2012; 55 (23): 10448-10459. doi: 10.1021/jm301053a
  • 139. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE. Anticancer activity of the antibiotic clioquinol. Cancer Research 2005; 65 (8): 3389- 3395. doi: 10.1158/0008-5472.CAN-04-3577
  • 140. D Schimmer A. Clioquinol-a novel copper-dependent and independent proteasome inhibitor. Current Cancer Drug Targets 2011; 11 (3): 325-331.
  • 141. Wehbe M, Lo C, Leung AW, Dragowska WH, Ryan GM et al. Copper (II) complexes of bidentate ligands exhibit potent anti-cancer activity regardless of platinum sensitivity status. Investigational New Drugs 2017; 35 (6): 682-690.
  • 142. Buac D, Schmitt S, Ventro G, Rani Kona F, Ping Dou Q. Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells. Mini Reviews in Medicinal Chemistry 2012; 12 (12): 1193-1201. doi: 10.1101/271353000000
  • 143. Safaei R, Holzer AK, Katano K, Samimi G, Howell SB. The role of copper transporters in the development of resistance to Pt drugs. Journal of Inorganic Biochemistry 2004; 98 (10): 1607-1613. doi: 10.1016/j.jinorgbio.2004.05.006
  • 144. Shreelekha A, Vivek B, Di C, Fakhara A, Ping Dou Q et al. Novel, Schiff base copper complexes of quinoline-2-carboxaldehyde as proteasome inhibitors in human prostate cancer cell. Journal of Medicinal Chemistry 2006; 49 (24): 7242-7246. doi: 10.1021/jm060712l
  • 145. Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Research 2006; 66 (21): 10425-10433. doi: 10.1158/0008-5472.CAN-06-2126
  • 146. Adams J. Development of the proteasome inhibitor PS-341. The oncologist. 2002; 7 (1): 9-16.
  • 147. Liu J, Fan L, Wang H, Sun G. Autophagy, a double-edged sword in anti-angiogenesis therapy. Medical Oncology 2016; 33 (1): 1-3.
  • 148. Borthakur A, Bhattacharyya S, Anbazhagan AN, Kumar A, Dudeja PK et al. Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB‐BCL10 loop. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2012; 1822 (8): 1300-1307. doi: 10.1016/j.bbadis.2004.10.005
  • 149. Kostova I, Momekov G, Zaharieva M, Karaivanova M. Cytotoxic activity of new lanthanum (III) complexes of bis-coumarins. European Journal of Medicinal Chemistry 2005; 40 (6): 542-551. doi: 10.1016/j.ejmech.2004.12.007
  • 150. Li Y, Trush MA. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu (II)/Cu (I) redox cycle and reactive oxygen generation. Carcinogenesis 1993; 14 (7): 1303-1311. doi: 10.1093/carcin/14.7.1303
  • 151. Rami M, Winum JY, Innocenti A, Montero JL, Scozzafava A et al. Carbonic anhydrase inhibitors: copper (II) complexes of polyaminopolycarboxylamido aromatic/heterocyclic sulfonamides are very potent inhibitors of the tumor-associated isoforms IX and XII. Bioorganic & Medicinal Chemistry Letters 2008; 18 (2): 836-841. doi: 10.1016/j.bmcl.2007.11.025 doi: 10.1016/j.bmcl.2007.11.025
  • 152. Dong X, Li Y, Li Z, Cui Y, Zhu H. Synthesis, structures and urease inhibition studies of copper (II) and nickel (II) complexes with bidentate N, O-donor Schiff base ligands. Journal of Inorganic Biochemistry 2012; 108: 22-29. doi: 10.1016/j.jinorgbio.2011.12.006
  • 153. Habala L, Varényi S, Bilková A, Herich P, Valentová J et al. Antimicrobial activity and urease inhibition of schiff bases derived from isoniazid and fluorinated benzaldehydes and of their copper (II) complexes. Molecules 2016; 21 (12): 174-182. doi: 10.3390/molecules21121742
  • 154. Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY et al. Copper complexes with phosphonium containing hydrazone ligand: topoisomerase inhibition and cytotoxicity study. European Journal of Medicinal Chemistry 2014; 76: 397-407. doi: 10.1016/j.ejmech.2014.02.049
  • 155. Ikram M, Rehman S, Baker RJ, Rehman HU, Khan A et al. Synthesis and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands: Kinetic and thermodynamic parameters evaluation from TG-DTA analysis. Thermochimica Acta 2013; 555: 72-80. doi: 10.1016/j.tca.2012.12.023
  • 156. Iakovidis I, Delimaris I, Piperakis SM. Copper and its complexes in medicine: a biochemical approach. Molecular Biology International 2011.
  • 157. Caglar S, Dilek E, Hamamci Alisir S, Caglar B. New copper (II) complexes including pyridine-2, 5-dicarboxylic acid: synthesis, spectroscopic, thermal properties, crystal structure and how these complexes interact with purified PON 1 enzyme. Journal of Coordination Chemistry 2016; 69 (16): 2482-2492. doi: 10.1080/00958972.2016.1188295
  • 158. Cui YM, Dong XW, Chen W, Wang WJ, Li YG et al. Synthesis, inhibitory activity and molecular docking studies of two Cu (II) complexes against Helicobacter pylori urease. Journal of Enzyme Inhibition and Medicinal Chemistry 2012; 27 (4): 528-532. doi: 10.3109/14756366.2011.599065
  • 159. Pan L, Wang C, Yan K, Zhao K, Sheng G et al. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper (II) complexes with tridentate aroylhydrazone ligands. Journal of Inorganic Biochemistry 2016; 159: 22-28. doi: 10.1016/j.jinorgbio.2016.02.017
  • 160. You ZL, Ni LL, Shi DH, Bai S. Synthesis, structures, and urease inhibitory activities of three copper (II) and zinc (II) complexes with 2-{[2-(2-hydroxyethylamino) ethylimino] methyl}-4-nitrophenol. European Journal of Medicinal Chemistry 2010; 45 (7): 3196-3199. doi: 10.1016/j.ejmech.2010.03.012
  • 161. You ZL, Shi DH, Xu C, Zhang Q, Zhu HL. Schiff base transition metal complexes as novel inhibitors of xanthine oxidase. European Journal of Medicinal Chemistry 2008; 43 (4): 862-871. doi: 10.1016/j.ejmech.2007.06.015
  • 162. Qamar N, Sultan H, Raheel A, Ashfaq M, Azmat R et al. Heterochelates of metals as an effective anti-Urease agents couple with their docking studies. Pakistan Journal of Pharmaceutical Sciences 2019; 32 (3): 1179-1184.
  • 163. Ikram M, Rehman S, Subhan F, Akhtar MN, Sinnokrot MO. Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl)-3-{[(E)-(2-hydroxyphenyl) methylidene] amino}-2, 3-dihydroquinazolin-4 (1H)-one. Open Chemistry 2017; 15 (1): 308-319. doi: 10.1515/chem-2017-0035
  • 164. Dong X, Guo T, Li Y, Cui Y, Wang Q. Synthesis, structure and urease inhibition studies of Schiff base copper (II) complexes with planar four-coordinate copper (II) centers. Journal of Inorganic Biochemistry 2013; 127: 82-89. doi: 10.1016/j.jinorgbio.2013.07.036
  • 165. Tanoli MA, Khan Z, Maqsood ZT, Iqbal L, Lateef M et al. Copper (II) complexes of bishydrazone derivatives: synthesis, characterization and urease inhibition studies. Journal of Scientific Research 2014; 22 (5): 698-703.
  • 166. Pervez H, Khan N, Iqbal J, Zaib S, Yaqub M et al. Synthesis, crystal structure, molecular docking studies and bio-evaluation of some N4- benzyl-substituted isatin-3-thiosemicarbazones as urease and glycation inhibitors. Heterocyclic Communications 2018; 24 (1): 51-58. doi: 10.1515/hc-2017-0148
  • 167. Li X, Yang X, Li Y, Gou Y, Wang Q. Synthesis, structure and urease inhibition studies of dimeric copper (II) complexes with a tridentate Schiff base ligand derived from tetrahydrofurfurylamine. Inorganica Chimica Acta 2013; 408: 46-52. doi: 10.1016/j.ica.2013.08.021
  • 168. Büyükkıdan N, Büyükkıdan B, Bülbül M, Kasımoğulları R, Mert S. Synthesis, characterization and in vitro inhibition of metal complexes of pyrazole based sulfonamide on human erythrocyte carbonic anhydrase isozymes I and II. Journal of Enzyme Inhibition and Medicinal Chemistry 2017; 32 (1): 208-213. doi: 10.1080/14756366.2016.1247056
  • 169. Andres SA, Bajaj K, Vishnosky NS, Peterson MA, Mashuta MS et al. Synthesis, characterization, and biological activity of hybrid thiosemicarbazone–alkylthiocarbamate metal complexes. Inorganic Chemistry 2020; 59 (7): 4924-4935. doi: 10.1021/acs. inorgchem.0c00182
  • 170. Dwivedi VD, Bharadwaj S, Afroz S, Khan N, Ansari MA et al. Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. Journal of Biomolecular Structure and Dynamics 2021; 39 (4): 1417-1430. doi: 10.1080/07391102.2020.1734485
  • 171. Jacobi H, Eicke B, Witte I. DNA strand break induction and enhanced cytotoxicity of propyl gallate in the presence of copper (II). Free Radical Biology and Medicine 1998; 24 (6): 972-978. doi: 10.1016/S0891-5849(97)00400-0
  • 172. Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A et al. Novel Cu (II), Co (II) and Zn (II) metal complexes with mixed-ligand: Synthesis, crystal structure, α-glucosidase inhibition, DFT calculations, and molecular docking. Journal of Molecular Structure 2019; 1197: 645-655. doi: 10.1016/j.molstruc.2019.07.039
  • 173. Tripathi IP, Dwivedi A, Mishra M. Metal Based α-glucosidase Inhibitors: Synthesis, Characterization and α-glucosidase Inhibition Activity of Transition Metal Complexes. Health 2017; 2 (3): 1-4.
  • 174. Jahangir M, Farwa U, Mazhar F, Malik A, Ahmad E. Metal II complexes of ethambutol as good enzyme inhibitor and promising antioxidant. Pakistan Journal of Pharmaceutical Sciences 2016; 29 (5): :1601-1608.
  • 175. Dooley DM, Cote CE, Golink KC. Inhibition of copper-containing amine oxidases by Cu (II) complexes and anions. Journal of Molecular Catalysis 1984; 23 (2-3): 243-253. doi: 10.1016/0304-5102(84)80012-7
  • 176. Piri Z, Moradi SZ, Assoud A. New copper (II) complex with bioactive 2–acetylpyridine-4N-p-chlorophenylthiosemicarbazone ligand: Synthesis, X-ray structure, and evaluation of antioxidant and antibacterial activity. Inorganic Chemistry Communications 2017; 84: 122- 126. doi: 10.1016/j.inoche.2017.08.005
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis of 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles as potent antibacterial and antioxidant agents

Subrahmanyam TALARI, A. Emmanuel KOLA, Bhuvaneswari CHALAPAKA, S. N. Murthy BODDAPATI

Drug delivery system for controlled release of empagliflozin from alginate-chitosan nanocarrier system

Nasim RAMAZANZADEH, Nosrat O. MAHMOODI

Polymer based advanced recipes for imidazoles: a review

Rajendra V. PATIL, Jagdish U. CHAVAN, Shivnath R. PATEL, Anil G. BELDAR

Microwave-assisted rapid conjugation of horseradish peroxidase-dextran aldehyde with Schiff base reaction and decolorization of Reactive Blue 19

Murat TOPUZOĞULLARI, Mithat ÇELEBİ, Zafer Ömer ÖZDEMİR

Selective hydrogenation of diphenylacetylene using NiCo nanoparticles supported on mesoporous carbon as catalyst

Alyaa S. SHIDDIQAH, Iman ABDULLAH, Yuni K. KRISNANDI

Adsorption of dimethyl disulfide onto activated carbon cloth

Firdevs MERT SİVRİ, Numan HODA, Leyla BUDAMA AKPOLAT, Ayhan TOPUZ, Emrah EROĞLU

Parametric and kinetic study of solvent-free synthesis of solketal using ion exchange resin

Sravanthi VELUTURLA, Archna NARULA, Dheer A. RAMBHIA

Biological potential of copper complexes: a review

Jamshaid ASHRAF, Muhammad Asad RIAZ

Synthesis, antioxidant activity, molecular docking and ADME studies of novel pyrrolebenzimidazole derivatives

Fikriye ZENGİN KARADAYI, Mehmet Murat KIŞLA, Zeynep ATEŞ ALAGÖZ, Rahman BAŞARAN, Binay CAN EKE

Ferrihydrite/ultrasound activated peroxymonosulfate for humic acid removal

Yi ZHANG, Hang YANG, Shibin XIA