Novel voltammetric investigation of dipyridamole at a disposable pencil graphite electrode

Novel voltammetric investigation of dipyridamole at a disposable pencil graphite electrode

The present paper describes the voltammetric analysis of dipyridamole (DIP) at a cheap, disposable pencilgraphite electrode (PGE). The working conditions were optimized with regard to the electrode material and thesupporting electrolyte. Cyclic voltammetric investigations emphasized that DIP is irreversibly oxidized at the PGE. The electrode process is pH-dependent and controlled by both diffusion and adsorption. For DIP quantitative determination a differential pulse voltammetric (DPV) method in phosphate buffer solution pH 7.00 was developed. DIP’s oxidation peak current varied linearly with the analyte concentration, presenting two linear ranges, namely 5.00 × 10 −7 –2.50 × 10 −5 M and 2.50 × 10 −5 –2.50 × 10 −4 M, with detection and quantification limits of 1.21 × 10 −7 M and 4.03 × 10 −7 M DIP, respectively. The newly developed DPV method using the inexpensive, disposable PGE was successfully applied for the simple and rapid determination of DIP from pharmaceutical formulations.

___

  • 1. de Toledo RA, Castilho M, Mazo LH. Electroreduction of dipyridamole at mercury-coated platinum microelectrode. Journal of the Brazilian Chemical Society 2004; 15 (3): 407-412. doi: 10.1590/S0103-50532004000300011
  • 2. Castilho M, Almeida AMP, Almeida LE, Tabak M, Mazo LH. The electrooxidation of dipyridamole derivatives in acetonitrile solution. Journal of Electroanalytical Chemistry 2002; 528 (1-2): 175-183. doi: 10.1016/S0022- 0728(02)00889-6
  • 3. Almeida LE, Castilho M, Mazo LH, Tabak M. Voltammetric and spectroscopic studies of the oxidation of the anti-oxidant drug dipyridamole in acetonitrile and ethanol. Analytica Chimica Acta 1998; 375 (3): 223-231. doi: 10.1016/S0003-2670(98)00501-7
  • 4. Hung CC, Yang ML, Lin MY, Lin HYH, Lim LM et al. Dipyridamole treatment is associated with improved renal outcome and patient survival in advanced chronic kidney disease. Kaohsiung Journal of Medical Sciences 2014; 30(12): 599-607. doi: 10.1016/j.kjms.2014.10.002
  • 5. Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S et al. Effects of pre and post-treatments with dipyridamole in gentamicin-induced acute nephrotoxicity in the rat. Regulatory Toxicology and Pharmacology 2017; 84: 35-44. doi: 10.1016/j.yrtph.2016.12.007
  • 6. Bekisz JM, Flores RL, Witek L, Lopez CD, Runyan CM et al. Dipyridamole enhances osteogenesis of threedimensionally printed bioactive ceramic scaffolds in calvarial defects. Journal of Cranio-Maxillo-Facial Surgery 2018; 46 (2): 237-244. doi.10.1016/j.jcms.2017.11.011
  • 7. Garcia-Borreguero D, Guitart X, Garcia Malo C, Cano-Pumarega I, Granizo JJ et al. Treatment of restless legs syndrome/Willis-Ekbom disease with the non-selective ENT1/ENT2 inhibitor dipyridamole: testing the adenosine hypothesis. Sleep Medicine 2018; 45: 94-97. doi: 10.1016/j.sleep.2018.02.002
  • 8. Borges CPF, Borissevitch IE, Tabak M. Charge- and pH-dependent binding sites of dipyridamole in ionic micelles: a fluorescence study. Journal of Luminescence 1995; 65 (2): 105-112. doi: 10.1016/0022-2313(95)00052-R
  • 9. Iuliano L, Piccheri C, Coppola I, Pratico D, Micheletta F et al. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochimica et Biophysica Acta-General Subjects 2000; 1474 (2): 177-182. doi: 10.1016/S0304-4165(00)00017-9
  • 10. Zhu G, Ju H, Zheng H. Fluorescence spectroscopic determination of dipyridamole binding on pancreas-1 tumor cell membrane. Clinica Chimica Acta 2004; 348 (1-2): 101-106. doi: 10.1016/j.cccn.2004.05.001
  • 11. Pedulli GF, Lucarini M, Marchesi E, Paolucci F, Roffia S et al. Medium effects on the antioxidant activity of dipyridamole. Free Radical Biology and Medicine 1999; 26 (3-4): 295. doi: 10.1016/S0891-5849(98)00191-9
  • 12. Wang S, Chen Y, Gong T, Dong W, Wang G et al. Solid-liquid equilibrium behavior and thermodynamic analysis of dipyridamole in pure and binary solvents from 293.15 K to 328.15 K. Journal of Molecular Liquids 2019; 275: 8-17. doi: 10.1016/j.molliq.2018.11.026
  • 13. Salinas-Castillo A, Carretero AS, Fernández-Gutiérrez A. Sensitive and simple determination of the vasodilator agent dipyridamole in pharmaceutical preparations by phosphorimetry. Analytical and Bioanalytical Chemistry 2003; 376 (7): 1111-1114. doi: 10.1007/s00216-003-2052-5
  • 14. Zeng X, Lin S, Hu N. Trace measurement of dipyridamole by adsorptive stripping voltammetry. Talanta 1993; 40 (8): 1183-1187. doi: 10.1016/0039-9140(93)80185-T
  • 15. Ghoneim MM, Tawfik A, Radi A. Assay of dipyridamole in human serum using cathodic adsorptive square-wave stripping voltammetry. Analytical and Bioanalytical Chemistry 2002; 374 (2): 289-293. doi: 10.1007/s00216-002- 1463-z
  • 16. Serebruany V, Pokov I, Hanley D. Spectro-fluorimetric assessment of plasma dipyridamole stability: sample storage for multicenter clinical trials? Thrombosis Research 2008; 123 (1): 184-186. doi: 10.1016/j.thromres.2008.07.002
  • 17. Borges CPF, Tabak M. Spectroscopic studies of dipyridamole derivatives in homogeneous solutions: effects of solution composition on the electronic absorption and emission. Spectrochimica Acta 1994; 50A (6): 1047-1056. doi: 10.1016/0584-8539(94)80026-x
  • 18. Shoukry AF, Ghani NTA, Issa YM, Wahdan OA. Spectrophotometric determination of dipyridamole and chlorpheniramine maleate using some chromotropic acid azo dyes. Analytical Letters 2001; 34 (10): 1689-1701. doi: 10.1081/AL-100105352
  • 19. Saadat A, Pourbasheer E, Morsali S, Aalizadeh R. Simultaneous spectrophotometric determination of aspirin and dipyridamole in pharmaceutical formulations using the multivariate calibration methods. Current Pharmaceutical Analysis 2018; 14 (4): 419-425. doi: 10.2174/1573412913666170613104439
  • 20. Pulgarin JAM, Molina AA, Lopez PF. Simultaneous determination of atenolol, propranolol, dipyridamole and amiloride by means of non-linear variable-angle synchronous-fluorescence spectrometry. Analytica Chimica Acta 1998; 370 (1): 9-18.
  • 21. Ruiz-Medina A, Fernández-de Córdova ML, Molina-Diaz A. A flow-through optosensing device with fluorimetric transduction for rapid and sensitive determination of dipyridamole in pharmaceuticals and human plasma. European Journal of Pharmaceutical Sciences 2001; 13 (4): 385-391. doi: 10.1016/S0928-0987(01)00133-6
  • 22. Wang L, Zhang ZJ. Chemiluminescence imaging assay dipyridamole based on molecular imprinted polymer as recognition material. Sensors and Actuators B-Chemical 2008; 133 (1): 40-45. doi: 10.1016/j.snb.2008.01.051
  • 23. Wang N, Xu FG, Zhang ZJ, Yang C, Sun XH et al. Simultaneous determination of dipyridamole and salicylic acid in human plasma by high performance liquid chromatography-mass spectrometry. Biomedical Chromatography 2008; 22 (2): 149-156. doi: 10.1002/bmc.909
  • 24. Chen M, Granvil C, Ji QC, Zhanga ZY, Padval MV et al. Development and validation of a liquid chromatography– tandem mass spectrometry assay for the simultaneous quantitation of prednisolone and dipyridamole in human plasma and its application in a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 2009; 49 (5): 1241-1249. doi: 10.1016/j.jpba.2009.02.017
  • 25. El-Ragehy NA, Hassan NY, Tantawy MA, Abdelkawy M. Simultaneous determination of aspirin, dipyridamole and two of their related impurities in capsules by validated TLC-densitometric and HPLC methods. Journal of Chromatographic Science 2016; 54 (7): 1120-1128. doi: 10.1093/chromsci/bmw077
  • 26. Deballon C, Guernet M. HPLC with electrochemical detection for the determination of dipyridamole in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis 1988; 6 (6-8): 1045-1048. doi: 10.1016/0731- 7085(88)80132-8
  • 27. Castilho M, Almeida LE, Tabak M, Mazo LH. Voltammetric oxidation of dipyridamole in aqueous acid solutions. Journal of the Brazilian Chemical Society 2000; 11 (2): 148-153.
  • 28. Castilho M, Almeida LE, Tabak M, Mazo LH. The electrochemical oxidation of the antioxidant drug dipyridamole at glassy carbon and graphite electrodes in micellar solutions. Electrochimica Acta 2000; 46 (1): 67-75. doi: 10.1016/S0013-4686(00)00539-9
  • 29. de Toledo RA, Castilho M, Mazo LH. Determination of dipyridamole in pharmaceutical preparations using square wave voltammetry. Journal of Pharmaceutical and Biomedical Analysis 2005; 36 (5): 1113-1117. doi: 10.1016/j.jpba.2004.09.011
  • 30. Javanbakht M, Fathollahi F, Divsar F, Ganjali MR, Norouzi P. A selective and sensitive voltammetric sensor based on molecularly imprinted polymer for the determination of dipyridamole in pharmaceuticals and biological fluids. Sensors and Actuators B-Chemical 2013; 182: 362-367. doi: 10.1016/j.snb.2013.02.097
  • 31. Li C. Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethylammonium bromide as enhancing element. Colloids and Surfaces B-Biointerfaces 2007; 55 (1): 77-83. doi: 10.1016/j.colsurfb.2006.11.009
  • 32. Wang ZH, Zhang HZ, Zhou SP. Determination of trace amounts of dipyridamole by stripping voltammetry using a Nafion modified electrode. Talanta 1997; 44 (4): 621-626. doi: 10.1016/S0039-9140(96)02078-4
  • 33. David IG, Florea MA, Cracea OG, Popa DE, Buleandra M et al. Voltammetric determination of vitamin B1 and vitamin B6 on a disposable electrode. Chemical Papers 2015; 69 (7): 901-910. doi: 10.1515/chempap-2015-0096
  • 34. David IG, Popa DE, Calin AA, Buleandra M, Iorgulescu EE. Voltammetric determination of famotidine on a disposable pencil graphite electrode. Turkish Journal of Chemistry 2016; 40 (1): 125-135. doi: 10.3906/kim-1504- 42
  • 35. Levent A, Önal G. Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples. Turkish Journal of Chemistry 2018; 42 (2): 460-471. doi: 10.3906/kim-1708-14
  • 36. Sağlam Ö, Önder FC, Güngör T, Ay M, Dildin Y. Electrochemical behavior and voltammetric determination of some nitro-substituted benzamide compounds. Turkish Journal of Chemistry 2018; 42 (3): 780-793. doi: 10.3906/kim-1705-51
  • 37. Yaman YT, Bolat G, Yardimci C, Abaci S. An ionic liquid/bismuth film-modified sensor for the electrochemical detection of cefixime. Turkish Journal of Chemistry 2018; 42 (3): 826-838. doi: 10.3906/kim-1710-17
  • 38. Manjunatha P, Nayaka YA, Chethana BK, Vidyasagar CC, Yathish RO. Development of multi-walled carbon nanotubes modified pencil graphite electrode for the electrochemical investigation of aceclofenac present in pharmaceutical and biological samples. Sensing and Bio-Sensing Research 2018; 17: 7-17. doi: 10.1016/j.sbsr.2017.12.001
  • 39. Purushothama HT, Nayaka YA, Vinay MM, Manjunatha P, Yathisha RO et al. Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine. Journal of Science: Advanced Materials and Devices 2018; 3 (2): 161-166. doi: 10.1016/j.jsamd.2018.03.007
  • 40. David IG, Buleandra M, Popa DE, Bizgan AMC, Moldovan Z et al. Voltammetric determination of polyphenolic content as rosmarinic acid equivalent in tea samples using pencil graphite electrodes .Journal of Food Science and Technology-Mysore 2016; 53 (6): 2589-2596. doi: 10.1007/s13197-016-2223-y
  • 41. David IG, Popa DE, Buleandra M, Moldovan Z, Iorgulescu EE et al. Cheap pencil graphite electrode for rapid voltammetric determination of chlorogenic acid in dietary supplements. Analytical Methods 2016; 8 (35): 6537- 6544. doi: 10.1007/s13197-016-2223-y
  • 42. Asofiei I, Calinescu I, Trifan A, David IG, Gavrila AI. Microwave assisted batch extraction of polyphenols from sea buckthorn leaves. Chemical Engineering Communications 2016; 203 (12): 1547-1553. doi: 10.1080/00986445.2015.1134518
  • 43. Chebotarev A, Pliuta K, Snigur D. Determination of morin on an electrochemically activated carbon-paste electrode. Turkish Journal of Chemistry 2018; 42 (36): 1534-1543. doi: 10.3906/kim-1805-37
  • 44. David IG, Badea IA, Radu GL. Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turkish Journal of Chemistry 2013; 37 (1): 91-100. doi: 10.3906/kim-1203-49
  • 45. David IG, Popa DE, Buleandra M. Pencil graphite electrodes: a versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry 2017; 2017: Article ID 1905968, 22 pages. doi: 10.1155/2017/1905968
  • 46. David IG, Litescu SC, Popa DE, Buleandra M, Iordache L et al. Voltammetric analysis of naringenin at a disposable pencil graphite electrode - application to polyphenol content determination in citrus juice. Analytical Methods 2018; 10 (48): 5763-5772. doi: 10.1039/c8ay02281j
  • 47. Alipour E, Majidi MR, Saadatirad A, Golabi SM, Alizadeh AM. Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochimica Acta 2013; 91: 36-42. doi: 10.1016/j.electacta.2012.12.079
  • 48. Supalkova V, Petrek J, Havel L, Krizkova S, Petrlova J et al. Electrochemical sensors for detection of acetylsalicylic acid. Sensors 2006; 6 (11): 1483-1497. doi: 10.3390/s6111483
  • 49. Aoki K, Okamoto T, Kaneko H, Nozaki K, Negishi A. Applicability of graphite reinforcement carbon used as the lead of a mechanical pencil to voltammetric electrodes. Journal of Electroanalytical Chemistry 1989; 263 (2): 323-331. doi: 10.1016/0022-0728(89)85102-2
  • 50. Gosser DK. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. New York, NY, USA: WileyVCH, 1993.
  • 51. Barzegar A. Proton-coupled electron-transfer mechanism for the radical scavenging activity of cardiovascular drug dipyridamole. PLoS ONE 2012; 7 (6): e39660. doi: 10.1371/journal.pone.0039660
  • 52. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry 1979; 101 (1): 19-28. doi: 10.1016/S0022-0728(79)80075-3
  • 53. Tabak M, Castilho M, Almeida LE, Mazo LH. Voltammetric studies of dipyridamole oxidation in aqueous micellar solutions. Free Radical Biology and Medicine 1998; 25: S40. doi: 10.1016/S0891-5849(98)90119-8
  • 54. González AG, Herrador MÁ. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends in Analytical Chemistry 2007; 26(3): 227-238. doi: 10.1016/j.trac.2007.01.009.
  • 55. Yari A, Shams A. Fabrication of a renewable syringe carbon paste electrode with a motor rotary blade and using for voltammetric measurement of dipyridamole. Journal of the Iranian Chemical Society 2018; 15 (8): 1861-1869. doi: 10.1007/s13738-018-1383-2.
  • 56. AOAC International. Guidelines for standard method performance requirements (Appendix F, pp. 1-17). Rockville, MD, USA: AOAC International, 2012.