Molecular dynamics simulations of adsorption of long pyrene-PEG chains on a thin carbon nanotube

Molecular dynamics simulations of adsorption of long pyrene-PEG chains on a thin carbon nanotube

Carbon nanotubes have emerged as highly promising theranostic agents due to their unique structural/physicalfeatures, high surface area, and high drug-loading capacity. The high cytotoxicity of carbon nanotubes can be eliminated by noncovalent coating using hydrophilic polymers. We investigated the adsorption of long pyrene functionalized polyethylene glycol (PEG) chains, PEG2000 and PEG5000 , on a single-walled carbon nanotube (SWNT) from a crowded solution. Full-atom molecular dynamics simulations in explicit water were used to mimic the experimental conditions of noncovalent PEGylation with a stoichiometry of one SWNT to ten pyrene-PEG. Although the diffusional behavior of the pyrene molecules still attached to the polymers did not change according to chain length, the adsorption rate for pyrene-PEG2000 to the SWNT was higher than that for pyrene-PEG5000 chains. Here longer chains sterically hindered the adsorption of pyrene groups on the SWNT surface. Once adsorbed, pyrene molecules stayed on the SWNT surface even though they frequently adopted different orientations that may weaken their π − π stacking interactions with the nanotube surface

___

  • 1. Comparetti EJ, de Albuquerque Pedrosa V, Kaneno R. Carbon nanotube as a tool for fighting cancer. Bioconjugate Chemistry 2018; 29 (3): 709-718. doi: 10.1021/acs.bioconjchem.7b00563
  • 2. Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon nanotube chemical sensors. Chemical Reviews 2019; 119 (1): 599-663. doi: 10.1021/acs.chemrev.8b00340.
  • 3. Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A et al. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Advanced Healthcare Materials 2018; 7 (9): e1701213. doi: 10.1002/adhm.201701213
  • 4. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. International Journal of Nanomedicine 2016; 11: 5163-5185. doi: 10.2147/IJN.S112660.
  • 5. Lee H. Molecular modeling of PEGylated peptides, dendrimers, and single-walled carbon nanotubes for biomedical applications. Polymers 2014; 6 (3): 776-798. doi: 10.3390/polym6030776.
  • 6. Zhou L, Forman HJ, Ge Y, Lunec J. Multi-walled carbon nanotubes: a cytotoxicity study in relation to functionalization, dose, dispersion. Toxicology in Vitro 2017; 42: 292-298. doi: 10.1016/j.tiv.2017.04.027
  • 7. Lee H. Dispersion and bilayer interaction of single-walled carbon nanotubes modulated by covalent and noncovalent PEGylation. Molecular Simulation 2015; 41 (15): 1254-1263. doi: 10.1080/08927022.2014.976638
  • 8. Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chemistry of Materials 2012; 24 (5): 840-853. doi: 10.1021/cm2031569
  • 9. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011; 6 (4): 715-728. doi: 10.2217/nnm.11.19
  • 10. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery 2016; 13 (9): 1257-1278. doi: 10.1080/17425247.2016.1182485
  • 11. Al-Qattan M, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discovery Today 2018; 23 (2): 235-250. doi.org/10.1016/j.drudis.2017.10.002
  • 12. Yang H, Bezugly V, Kunstmann J, Filoramo A, Cuniberti G. Diameter-selective dispersion of carbon nanotubes via polymers: a competition between adsorption and bundling. ACS Nano 2015; 9 (9): 9012-9019. doi: 10.1021/acsnano.5b03051
  • 13. Zheng Q, Xue Q, Yan K, Gao X, Li Q et al. Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites. Journal of Applied Physics 2008; 103: 044302. doi: 10.1063/1.2844289
  • 14. Cai L, Lv W, Zhu H, Xu Q. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube. Physica E 2016; 81: 226-234. https://doi.org/10.1016/j.physe.2016.03.021
  • 15. Xin X, Xu G, Zhao T, Zhu Y, Shi X et al. Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer. Journal of Physical Chemistry C 2008; 112 (42): 16377-16384. doi: 10.1021/jp8059344
  • 16. Sarukhanyan E, Milano G, Roccatano D. Coating mechanisms of single-walled carbon nanotube by linear polyether surfactants: insights from computer simulations. Journal of Physical Chemistry C 2014; 118 (31): 18069-18078. doi: 10.1021/jp501559x
  • 17. Eslami H, Behrouz M. Molecular dynamics simulation of a polyamide-66/carbon nanotube nanocomposite. Journal of Physical Chemistry C 2014; 118 (18): 9841-9851. doi: 10.1021/jp501672t
  • 18. Lee H. Molecular dynamics studies of PEGylated single-walled carbon nanotubes: the effect of PEG size and grafting density. Journal of Physical Chemistry C 2013; 117 (49): 26334-26341. doi: 10.1021/jp4093749
  • 19. Tallury SS, Pasquinelli MA. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. The Journal of Physical Chemistry B 2010; 114 (12): 4122-4129. doi: 10.1021/jp908001d
  • 20. Fu H, Xu S, Li Y. Nanohelices from planar polymer self-assembled in carbon nanotubes. Scientific Reports 2016; 6: 30310. doi: 10.1038/srep30310
  • 21. Matsuo Y, Tahara K, Nakamura E. Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes. Organic Letters 2003; 5 (18): 3181-3184. doi: 10.1021/ol0349514
  • 22. Ormsby JL, King BT. Clar valence bond representation of π -bonding in carbon nanotubes. The Journal of Organic Chemistry 2004; 69 (13): 4287-4291. doi: 10.1021/jo035589+
  • 23. Linert W, Lukovits I. Aromaticity of carbon nanotubes. Journal of Chemical Information and Modeling 2007; 47 (3): 887-890. doi: 10.1021/ci600504r
  • 24. Martin-Martinez FJ, Melchor S, Dobado JA. Edge effects, electronic arrangement, and aromaticity patterns on finite-length carbon nanotubes. Physical Chemistry Chemical Physics 2011; 13: 12844-12857. doi: 10.1039/c1cp20672a
  • 25. Umadevi D, Panigrahi S, Sastry GN. Noncovalent interaction of carbon nanostructures. Accounts of Chemical Research 2014; 47 (8): 2574-2581. doi: 10.1021/ar500168b
  • 26. Zhao YL, Stoddart JF. Noncovalent functionalization of single-walled carbon nanotubes. Accounts of Chemical Research 2009; 42 (8): 1161-1171. doi: 10.1021/ar900056z
  • 27. Perez EM, Martin N. π − π Interactions in carbon nanostructures. Chemical Society Reviews 2015; 44 (18): 6425-6433. doi: 10.1039/C5CS00578G
  • 28. Gavrel G, Jousselme B, Filoramo A, Campidelli S. Supramolecular chemistry of carbon nanotubes. Topics in Current Chemistry 2014; 348: 95-126. doi: 10.1007/128 2013 450
  • 29. Martin N, Nierengarten JF. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes. Weinheim, Germany: Wiley-VCH, 2012.
  • 30. Calbo J, Lopez-Moreno A, de Juan A, Comer J, Orti E et al. Understanding noncovalent interactions of small molecules with carbon nanotubes. Chemistry A European Journal 2017; 23 (52): 12909-12916. doi: 10.1002/chem. 201702756
  • 31. Naotoshi N, Yasuhiko T, Hiroto M. Water-soluble single-walled carbon nanotubes via noncovalent sidewallfunctionalization with a pyrene-carrying ammonium ion. Chemistry Letters 2002; 31 (6): 638-639. doi: 10.1246/cl. 2002.638
  • 32. Meran M, Akkus PA, Kurkcuoglu O, Baysak E, Hizal G et al. Noncovalent pyrene-polyethylene glycol coatings of carbon nanotubes achieve in vitro biocompatibility. Langmuir 2018; 34 (40): 12071-12082. doi: 10.1021/acs.langmuir. 8b00971
  • 33. Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society 2001; 123 (16): 3838-3839. doi: 10.1021/ja010172b
  • 34. Bobadilla AD, Samuel EL, Tour J, Seminario J. Calculating the hydrodynamic volume of poly(ethylene oxylated) single-walled carbon nanotubes and hydrophilic carbon clusters. Journal of Physical Chemistry B 2013; 117 (1): 343-354. doi: 10.1021/jp305302y
  • 35. Xu L, Yang X. Molecular dynamics simulation of adsorption of pyrene-polyethylene glycol onto graphene. Journal of Colloid and Interface Science 2014; 418: 66-73. doi: 10.1016/j.jcis.2013.12.005
  • 36. Mosquet M, Chevalier Y, Brunel S, Guicquero JP, Le Perchec P. Polyoxyethylene di-phosphonates as efficient dispersing polymers for aqueous suspensions. Journal of Applied Polymer Science 1997; 65 (12): 2545-2555. doi: 10.1002/(SICI)1097-4628(19970919)65:12<2545::AID-APP24>3.0.CO;2-Y
  • 37. Vrentas JS, Chu CH. Molecular weight dependence of the diffusion coefficient for the polystyrene-toluene system. Journal of Polymer Science Part B: Polymer Physics 1989; 27: 465-468. doi: 10.1002/polb.1989.090270216
  • 38. Lee H, de Vries AH, Marrink SJ, Pastor RW. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. Journal of Physical Chemistry B 2009; 113 (40): 13186-13194. doi: 10.1021/jp9058966
  • 39. Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T. Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer 1997; 38 (12): 2885-2891. doi: 10.1016/S0032- 3861(96)00859-2
  • 40. Wang Y, Shu X, Liu J, Ran Q. Conformational properties and the entropic barrier in the “head-on” adsorption of a single polymer chain towards a flat surface. Soft Matter 2018; 14: 2077-2083. doi: 10.1039/c8sm00013a
  • 41. Sun HJ. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. Journal of Physical Chemistry B 1998; 102 (38): 7338-7364. doi: 10.1021/jp980939v
  • 42. Rappe AK, Goddard III WA. Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry 1991; 95 (8): 3358-3363. doi: 10.1021/j100161a070
  • 43. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry 2010; 2 (7): 581-587. doi: 10.1038/nchem.686
  • 44. Pupysheva OV, Farajian AA, Knick CR, Zhamu A, Jang BZ. Modeling direct exfoliation of nanoscale graphene platelets. Journal of Physical Chemistry C 2010; 114 (49): 21083-21087. doi: 10.1021/jp1071378
  • 45. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics 1984; 81: 3684. doi: 10.1063/1.448118