A novel selective fluorescent chemosensor for $Fe^{3+}$ ions based on phthalonitrile dimer: synthesis, analysis, and theoretical studies

A novel selective fluorescent chemosensor for $Fe^{3+}$ ions based on phthalonitrile dimer: synthesis, analysis, and theoretical studies

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, $^1 H-NMR, ^{13}C-NMR$, and ^{13}C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off ’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and $Fe^{3+}$. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with $Fe^{3+}$ ions.

___

  • 1. Wang W, Wu J, Liu Q, Gao Y, Liu H et al. A highly selective coumarin-based chemosensor for the sequential detection of Fe3+ and pyrophosphate and its application in living cell imaging. Tetrahedron Letters 2018; 59 (19): 1860-1865. doi: 10.1016/j.tetlet.2018.04.007
  • 2. Jin X, Wang S, Yin W, Xu T, Jiang Y et al. A highly sensitive and selective fluorescence chemosensor for Fe3+ based on rhodamine and its application in vivo imaging. Sensors and Actuators B: Chemical 2017; 247: 461-468. doi: 10.1016/j.snb.2017.03.084
  • 3. Liu Y, Shen R, Ru J, Yao X, Yang Y et al. A reversible rhodamine 6G-based fluorescence turn-on probe for $Fe^{3+}$ in water and its application in living cell imaging. RSC Advances 2016; 6 (113): 111754-111759. doi: 10.1039/c5ra09758d
  • 4. Iniya M, Vidya B, Anand T, Sivaraman G, Jeyanthi D et al. Microwave‐assisted synthesis of imidazoquinazoline for chemosensing of $Pb^{3+}$ and $Fe^{3+}$ and living cell application. Chemistry Select 2018; 3 (4): 1282-1288. doi: 10.1002/slct.201702860
  • 5. Wang C, Fu J, Yao K, Xue K, Xu K et al. Acridine-based fluorescence chemosensors for selective sensing of $Fe^{3+}$ and $Ni^{2+}$ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018; 199: 403-411. doi: 10.1016/j.saa.2018.03.015
  • 6. Shi D, Ni M, Luo J, Akashi M, Liu X et al. Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion. Analyst 2015; 140 (4): 1306-1313. doi: 10.1039/c4an01991a
  • 7. Jin L, Liu C, An N, Zhang Q, Wang J et al. Fluorescence turn-on detection of $Fe^{3+}$ in pure water based on a cationic poly (perylene diimide) derivative. RSC Advances 2016; 6 (63): 58394-58400. doi: 10.1039/c6ra08267j
  • 8. Spolaor A, Vallelonga P, Gabrieli J, Cozii G, Boutron C et al. Determination of $Fe^{2+}$ and $Fe^{3+}$ species by FIA-CRC-ICP-MS in Antarctic ice samples. Journal of Analytical Atomic Spectrometry 2012; 27 (2): 310-317. doi: 10.1039/C1JA10276A
  • 9. Dong Y, Fan R, Chen W, Wang P, Yang Y. A simple quinolone Schiff-base containing CHEF based fluorescence ‘turn-on’ chemosensor for distinguishing $Zn^{2+}$ and $Hg^{2+}$ with high sensitivity, selectivity and reversibility. Dalton Transactions 2017; 46 (20): 6769-6775. doi: 10.1039/c7dt00956a
  • 10. Yi FY, Wang SC, Gu M, Zheng JQ, Han L. Highly selective luminescent sensor for CCl4 vapor and pollutional anions/cations based on a multi-responsive MOF. Journal of Materials Chemistry C 2018; 6 (8): 2010-2018. doi: 10.1039/c7tc05707e
  • 11. Iqbal A, Tian Y, Wang X, Gong D, Guo Y et al. Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of$Fe^{2+}$ and $Fe^{3+}$. Sensors and Actuators B: Chemical2016; 237: 408-415. doi: 10.1016/j.snb.2016.06.126
  • 12. Cook MJ, Heeney MJ. Phthalocyaninodehydroannulenes. Chemistry: A European Journal 2000; 6 (21): 3958-3967. doi: 10.1002/1521-3765(20001103)6:21<3958::AID-CHEM3958>3.0.CO;2-Y
  • 13. Kaya EN, Yuksel F, Özpınar GA, Bulut M, Durmuş M. 7-Oxy-3-(3,4,5-trimethoxyphenyl) coumarin substituted phthalonitrile derivatives as fluorescent sensors for detection of Fe3+ ions: experimental and theoretical study. Sensors and Actuators B: Chemical 2014; 194: 377-388.
  • 14. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review 1964; 136 (3B): B864. doi: 10.1103/physrev.136.b864
  • 15. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review 1965; 140 (4A): A1133. doi: 10.1103/PhysRev.140.A1133
  • 16. Ordejón P, Artacho E, Soler JM. Self-consistent order-N density-functional calculations for very large systems. Physical Review B 1996; 53 (16): R10441. doi: 10.1103/PhysRevB.53.R10441
  • 17. Soler JM, Artacho E, Gale JD, García A, Junquera J et al. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter 2002; 14 (11): 2745-2779. doi: 10.1088/0953-8984/14/11/302
  • 18. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77 (18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
  • 19. Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Physical Review B 1991; 43 (3): 1993-2006. doi: 10.1103/ PhysRevB.43.1993
  • 20. Kleinman L, Bylander DM. Efficacious form for model pseudopotentials. Physical Review Letters 1982; 48 (20): 1425-1428. doi: 10.1103/ PhysRevLett.48.1425
  • 21. Das S, Aich K, Goswami S, Quah CK, Fun HK. FRET-based fluorescence ratiometric and colorimetric sensor to discriminate Fe3+ from $Fe^{2+}$. New Journal of Chemistry 2016; 40 (7): 6414-6420. doi: 10.1039/c5nj03598h
  • 22. Zhang Y, Xiao Y, Zhang Y, Wang Y. Carbon quantum dots as fluorescence turn-off-on probe for detecting $Fe^{3+}$ and ascorbic acid. Journal of Nanoscience and Nanotechnology 2020; 20 (6): 3340-3347. doi: 10.1166/jnn.2020.17412
  • 23. Lee MH, Giap TV, Kim SH, Lee YH, Kang C et al. A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chemical Communications 2010; 46 (9): 1407-1409. doi: 10.1039/B921526C
  • 24. Özcan E, Tümay SO, Keşan G, Yeşilot S, Çoşut B. The novel anthracene decorated dendrimeric cyclophosphazenes forhighly selective sensing of 2,4,6-trinitrotoluene (TNT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 220: 117115.doi: 10.1016/j.saa.2019.05.020
  • 25. Duran C, Tumay SO, Ozdes D, Serencam H, Bektas H. Simultaneous separation and preconcentration of Ni(II) and Cu(II) ions by coprecipitation without any carrier element in some food and water samples. International Journal of Food Science & Technology 2014; 49 (6): 1586-1592. doi: 10.1111/ijfs.12458
  • 26. Ly NH, Yoon J, Nguyen DB, Cho KH, Joo SW. Luminescent properties of 4‐aminobenzo‐15‐crown‐5 after preferential binding of ferric ions in aqueous solutions. Luminescence 2017; 32 (4): 549-554. doi: 10.1002/bio.3220
  • 27. Ho JA, Chang HC, Su WT. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Analytical Chemistry 2012; 84 (7): 3246-3253. doi: 10.1021/ac203362g
  • 28. Lin W, Long L, Yuan L, Cao Z, Feng J. A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. Analytica Chimica Acta 2009; 34 (2): 262-266. doi: 10.1016/j.aca.2008.12.049
  • 29. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA et al. A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors and Actuators B: Chemical 2014; 194: 343-352. doi: 10.1016/j. snb.2013.12.114
  • 30. Gong X, Ding X, Jiang N, Zhong T, Wang G. Benzothiazole-based fluorescence chemosensors for rapid recognition and “turn-off ” fluorescence detection of $Fe^{3+}$ ions in aqueous solution and in living cells. Microchemical Journal 2020; 152: 104351. doi: 10.1016/j. microc.2019.104351