Tuning the mechanical properties and degradation properties of polydioxanone isothermal annealing

Tuning the mechanical properties and degradation properties of polydioxanone isothermal annealing

Polydioxanone (PPDO) is synthesized by ring-opening polymerization of p-dioxanone, using stannous octoate as the catalyst. The polarized optical micrograph (POM) shows thes pherulite growth rate of PPDO decreases with an increase in the isothermal crystallization temperature. PPDO is compression-molded into bars, and PPDO bars are subjected to isothermal annealing at a range of temperatures (Ta = 50, 60, 70, 80, 90, and 100 °C), and correspond to three different annealing times (ta = 1h, 2h, 3h). The effect on PPDO is investigated by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). With an increase in Ta and ta, the grain size and the degree of crystallinity also increase. Meanwhile, the tensile strength is significantly improved. The PPDO bars (90 °C, 2 h) reach the maximum crystallinity (57.21%) and the maximum tensile strength (41.1 MPa). Interestingly, the heat treatment process does not result in serious thermal degradation. It is observed that the hydrolytic degradation of the annealed PPDO is delayed to some extent. Thus, annealed PPDO might have potential applications, particularly in the fields of orthopedic fixation and tissue engineering.

___

  • 1. Acik G. Bio-based poly(ε-caprolactone) from soybean-oil derived polyol via ring-opening polymerization. Journal of Polymers and the Environment 2019; 28 (2): 668-675. doi: 10.1007/s10924-019-01597-7
  • 2. Acik G. Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(ε-caprolactone)s. Express Polymer Letters 2020; 14 (3): 272-280. doi: 10.3144/expresspolymlett.2020.23
  • 3. Acik G, Karatavuk AO. Synthesis, properties and biodegradability of cross-linked amphiphilic Poly (vinyl acrylate)-Poly(tert-butyl acrylate)s by photo-initiated radical polymerization. European Polymer Journal 2020; 127: 6. doi: 10.1016/j.eurpolymj.2020.109602
  • 4. Bai W, Zhang ZP, Li Q, Chen DL, Chen HC et al. Miscibility, morphology, and thermal properties of poly(para-dioxanone)/poly(D, L-lactide) blends. Polymer International 2009; 58 (2): 183-189. doi: 10.1002/pi.2512
  • 5. Raquez JM, Coulembier O, Duda A, Narayan R, Dubois P. Recent advances in the synthesis and applications of poly(1,4-dioxan-2-one) based copolymers. Polimery 2009; 54 (3): 165-178. doi: 10.14314/polimery.2009.165
  • 6. Panchal SS, Vasava DV. Biodegradable polymeric materials: synthetic approach. ACS Omega 2020; 5 (9): 4370-4379. doi: 10.1021/ acsomega.9b04422
  • 7. Marquez Y, Franco L, Turon P, Martinez JC, Puiggali J. Study of non-isothermal crystallization of polydioxanone and analysis of morphological changes occurring during heating and cooling processes. Polymers 2016; 8 (10): 18. doi: 10.3390/polym8100351
  • 8. Yang KK, Wang XL, Wang YZ. Poly(p-dioxanone) and its copolymers. Journal of Macromolecular Science-Polymer Reviews 2002; C42 (3): 373-398. doi: 10.1081/MC-120006453
  • 9. Pezzin APT, Van Ekenstein GOR, Duek EAR. Melt behaviour, crystallinity and morphology of poly(p-dioxanone). Polymer 2001; 42 (19): 8303-8306. doi: 10.1016/S0032-3861(01)00273-7
  • 10. Yang KK, Wang XL, Wang YZ, Huang HX. Effects of molecular weights of bioabsorbable poly(p-dioxanone) on its crystallization behaviors. Journal of Applied Polymer Science 2006; 100 (3): 2331-2335. doi: 10.1002/app.23003
  • 11. Haase T, Klopfleisch R, Krost A, Sauter T, Kratz K et al. In vivo biocompatibility study of degradable homo-versus multiblock copolymers and their (micro)structure compared to an established biomaterial. Clinical Hemorheology and Microcirculation 2020. doi: 10.3233/CH190748
  • 12. Zhu YF, Huang XM, Cao J, Hu JQ, Bai Y et al. Animal experimental study of the fully biodegradable atrial septal defect (ASD) occluder. Journal of Biomedicine and Biotechnology 2012. doi: 10.1155/2012/735989
  • 13. Zhao N, Wang L, Huang D, Zhang T, Zhang L et al. Effect of isothermal annealing on degree of crystallinity and mechanical properties of poly(l-lactide-co-glycolide). Crystal Research and Technology 2010; 45 (3): 275-280. doi: 10.1002/crat.200900617
  • 14. Zhao N, Ma Z, Li Q, Chen D, Xiong C. Effect of nucleation of tricalcium phosphate and isothermal annealing on the crystallization of poly(l-lactide-co-glycolide). Journal of Polymers and the Environment 2012; 21 (1): 259-265. doi: 10.1007/s10924-012-0522-6
  • 15. Camarero-Espinosa S, Boday DJ, Weder C, Foster EJ. Cellulose nanocrystal driven crystallization of Poly(D,L-lactide) and improvement of the thermomechanical properties. Journal of Applied Polymer Science 2015; 132 (10): 11. doi: 10.1002/app.41607
  • 16. Perez-Camargo RK, Fernandez-d’Arlas B, Cavallo D, Debuissy T, Pollet E et al. Tailoring the structure, morphology, and crystallization of isodimorphic poly(butylene succinate-ran-butylene adipate) random copolymers by changing composition and thermal history. Macromolecules 2017; 50 (2): 597-608. doi: 10.1021/acs.macromol.6b02457
  • 17. Zheng Y, Zhou J, Bao YZ, Shan GR, Pan PJ. Polymorphic crystal transition and lamellae structural evolution of poly(p-dioxanone) induced by annealing and stretching. Journal of Physical Chemistry B 2019; 123 (17): 3822-3831. doi: 10.1021/acs.jpcb.8b12111
  • 18. Zhao F, Xue W, Wang FJ, Yu CL, Xu HY et al. A new approach to improve the local compressive properties of PPDO self-expandable stent. Journal of the Mechanical Behavior of Biomedical Materials 2017; 68: 318-326. doi: 10.1016/j.jmbbm.2017.02.015
  • 19. Li XY, Zhou Q, Wen ZB, Hui Y, Yang KK et al. Influence of catalysts used in synthesis of poly(p-dioxanone) on its thermal degradation behaviors. Polymer Degradation and Stability 2015; 121 (2015): 253-260. doi: 10.1016/j.polymdegradstab.2015.09.016
  • 20. Nishida H, Yamashita M, Endo T. Analysis of the initial process in pyrolysis of poly(p-dioxanone). Polymer Degradation and Stability 2002; 78 (1): 129-135. doi: 10.1016/S0141-3910(02)00126-X
  • 21. Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Thermal decomposition of poly(1,4-dioxan-2-one). Polymer Degradation and Stability 2000; 70 (3): 485-496. doi: 10.1016/S0141-3910(00)00145-2
  • 22. Luyt AS, Gasmi S. Influence of TiO2 Nanoparticles on the crystallization behaviour and tensile properties of biodegradable PLA and PCL nanocomposites. Journal of Polymers and the Environment 2018; 26 (6): 2410-2423. doi: 10.1007/s10924-017-1142-y
  • 23. Lojkowski M, Walheim S, Jokubauskas P, Schimmel T, Swieszkowski W. Tuning the wettability of a thin polymer film by gradually changing the geometry of nanoscale pore edges. Langmuir 2019; 35 (17): 5987-5996. doi: 10.1021/acs.langmuir.9b00467
  • 24. Hu J, Wang JP, Gowd EB, Yuan Y, Zhang TP et al. Small- and wide-angle X-ray scattering study on alpha-to-alpha transition of Poly(Llactide acid) crystals. Polymer 2019; 167 (2019): 122-129. doi: 10.1016/j.polymer.2019.01.088
  • 25. Bai W, Li Q, Jiang LY, Zhang ZP, Zhang SL et al. Poly(para-dioxanone)/poly(D,L-lactide) blends compatibilized with poly(D,L-lactide-copara-dioxanone). Journal of Applied Polymer Science 2011; 120 (1): 544-551. doi: 10.1002/app.33197
  • 26. Wang B, Ma C, Xiong ZC, Bai W, Xiong CD et al. Amino acid endcapped poly(p-dioxanone): synthesis and crystallization. Journal of Polymer Research 2013; 20 (4): 9. doi: 10.1007/s10965-013-0116-6
  • 27. Bai Y, Wang PQ, Bai W, Zhang LF, Li Q et al. Miscibility, thermal and mechanical properties of poly(para-dioxanone)/poly(lactic-coglycolic acid) blends. Journal of Polymers and the Environment 2015; 23 (3): 367-373. doi: 10.1007/s10924-014-0686-3
  • 28. Bai W, Chen DL, Li Q, Chen HC, Zhang SL et al. In vitro hydrolytic degradation of poly(para-dioxanone) with high molecular weight. Journal of Polymer Research 2009; 16 (5): 471-480. doi: 10.1007/s10965-008-9250-y
  • 29. Andjelic S, Jamiolkowski D, McDivitt J, Fischer J, Zhou J. Spherulitic growth rates and morphology of absorbable poly(p-dioxanone) homopolymer and its copolymer by hot-stage optical microscopy. Journal of Polymer Science 2001; 39 (24): 3073-3089. doi: 10.1002/ polb.10065
  • 30. Sabino MA, Feijoo JL, Muller AJ. Crystallisation and morphology of poly(p-dioxanone). Macromolecular Chemistry and Physics 2000; 201 (18): 2687-2698. doi:10.1002/1521-3935(20001201)201:18<2687::AID-MACP2687>3.0.CO;2-#
  • 31. Tsuji H, Ikada Y. Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide). Polymer 1995; 36 (14): 2709-2716. doi: 10.1016/0032-3861(95)93647-5
  • 32. Zeng JB, Srinivansan M, Li SL, Narayan R, Wang YZ. Nonisothermal and isothermal cold crystallization behaviors of biodegradable poly(p-dioxanone). Industrial & Engineering Chemistry Research 2011; 50 (8): 4471-4477. doi: 10.1021/ie102299y
  • 33. Loo SCJ, Ooi CP, Wee SHE, Boey YCF. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials 2005; 26 (16): 2827-2833. doi: 10.1016/j.biomaterials.2004.08.031
  • 34. Yang KK, Wang XL, Wang YZ, Wu B, Jin YD et al. Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). European Polymer Journal 2003; 39 (8): 1567-1574. doi: 10.1016/S0014-3057(03)00052-1
  • 35. Brito Y, Sabino MA, Ronca G, Müller AJ. Changes in crystalline morphology, thermal, and mechanical properties with hydrolytic degradation of immiscible biodegradable PPDX/PCL blends. Journal of Applied Polymer Science 2008; 110 (6): 3848-3858. doi: 10.1002/ app.28883
  • 36. Sabino MA, Albuerne J, Muller AJ, Brisson J, Prud’homme RE. Influence of in vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone). Biomacromolecules 2004; 5 (2): 358-370. doi: 10.1021/bm034367i
  • 37. Bai W, Zhang LF, Li Q, Chen DL, Xiong CD. In vitro hydrolytic degradation of poly(para-dioxanone)/poly(D,L-lactide) blends. Materials Chemistry and Physics 2010; 122 (1): 79-86. doi: 10.1016/j.matchemphys.2010.02.064