Determination of blood glucose parameter from human blood serum by using a quartz crystal microbalance sensor coated with phthalocyanines compounds

Determination of blood glucose parameter from human blood serum by using a quartz crystal microbalance sensor coated with phthalocyanines compounds

Determining the blood glucose level is important for the prevention and treatment of diabetes mellitus. We developed a sensor system using Quartz Crystal Microbalance (QCM) to determine the blood glucose level from human blood serum. This study consists of two experimental stages: artificial glucose/pure water solution tests and human blood serum tests. In the first stage of the study, the QCM sensor with the highest performance was identified using artificial glucose solution concentrations. In the second stage of the study, human blood serum measurements were performed using QCM to determine blood glucose levels. QCM sensors were coated with phthalocyanines (Pcs) by jet spray method. The blood glucose values of 96 volunteers, which ranged from 71 mg/dL to 329 mg/dL, were recorded. As a result of the study, human glucose values were determined with an average error of 3.25%.

___

  • 1. Da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T et al. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Research and Clinical Practice 2016; 117: 48-54. doi: 10.1016/j.diabres.2016.04.016
  • 2. King WH. Piezoelectric sorption detector. Analytical Chemistry 1964; 36 (9): 1735-1739. doi: 10.1021/ac60215a012
  • 3. Konash PL, Bastiaans GJ. Piezoelectric crystals as detectors in liquid chromatography. Analytical Chemistry 1980; 52 (12): 1929-1931. doi: 10.1021/ac50062a033
  • 4. Kanazawa KK, Gordon JG. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry 1985; 57 (8): 1770-1771. doi: 10.1021/ac00285a062
  • 5. Kanazawa KK, Gordon JG. The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta 1985; 175: 99- 105. doi: 10.1016/S0003-2670(00)82721-X
  • 6. Martin SJ, Granstaff VE, Frye GC. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry 1991; 63 (20): 2272-2281. doi: 10.1021/ac00020a015
  • 7. Cheng TJ, Lin TM, Wu TH, Chang HC. Determination of heparin levels in blood with activated partial thromboplastin time by a piezoelectric quartz crystal sensor. Analytica Chimica Acta 2001; 432 (1): 101-111. doi: 10.1016/S0003-2670(00)01346-5
  • 8. Huang H, Zhou J, Chen S, Zeng L, Huang Y. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensors and Actuators B: Chemical 2004; 101 (3): 316-321. doi: 10.1016/j.snb.2004.04.001
  • 9. Lin TY, Hu CH, Chou TC. Determination of albumin concentration by MIP-QCM sensor. Biosensors and Bioelectronics 2004; 20 (1): 75-81. doi: 10.1016/j.bios.2004.01.028
  • 10. Saraoglu HM, Kocan M. Determination of blood glucose level-based breath analysis by a quartz crystal microbalance sensor array. IEEE Sensors Journal 2010; 10 (1): 104-109. doi: 10.1109/JSEN.2009.2035769
  • 11. Muller L, Sinn S, Drechsel H, Ziegler C, Wendel HP et al. Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. Analytical Chemistry 2010; 82 (2): 658-663. doi: 10.1021/ac9021117
  • 12. Erbahar DD, Harbeck M, Gumus G, Gurol I, Ahsen V. Self-assembly of phthalocyanines on quartz crystal microbalances for QCM liquid sensing applications. Sensors and Actuators B: Chemical 2014; 190: 651-656. doi: 10.1016/j.snb.2013.09.034
  • 13. Tasaltin C, Gurol I, Harbeck M, Musluoglu E, Ahsen V et al. Synthesis and DMMP sensing properties of fluoroalkyloxy and fluoroaryloxy substituted phthalocyanines in acoustic sensors. Sensors and Actuators B: Chemical 2010; 150 (2): 781-787. doi: 10.1016/j.snb.2010.07.056
  • 14. Yoshiyama H, Shibata N, Sato T, Nakamura S, Toru T. Synthesis and properties of trifluoroethoxy-coated binuclear phthalocyanine. Chemical Communications 2008; 17: 1977-1979. doi: 10.1039/B800918J
  • 15. Panda A, Pukhrambam PD, Keiser G. Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Applied Physics A 2020; 126(3): 153. doi :10.1007/s00339-020-3328-8
  • 16. Juan CG,Bronchalo E, Potelon B, Quendo C, Sabater-Navarro JM. Glucose concentration measurement in human blood plasma solutions with microwave sensors. Sensors 2019; 19(17): 3779. doi : 10.3390/s19173779
  • 17. Al-Sagur H, KayaEN, Durmuş M, Basova TV, Hassan A. Amperometric glucose biosensing performance of a novel graphene nanoplateletsiron phthalocyanine incorporated conducting hydrogel. Biosensors and Bioelectronics 2019; 139: 111323. doi:10.1016/j.bios.2019.111323
  • 18. Rasooly A. Biosensor technologies. Methods 2005; 37 (1): 1-3. doi: 10.1016/j.ymeth.2005.05.004
  • 19. Sauerbrey G. Verwendung von Schwingquarzen zur Wägungdünner Schichten und zur Mikrowägung. Zeitschriftfür Physik 1959; 155 (2): 206-222. doi: 10.1007/BF01337937
  • 20. Voinova MV, Jonson M, Kasemo B. ‘Missing mass’ effect in biosensor’s QCM applications. Biosensors and Bioelectronics 2002; 17 (10): 835-841. doi: 10.1016/S0956-5663(02)00050-7
  • 21. Kankare J, Sauerbrey Equation of Quartz Crystal Microbalance in Liquid Medium. Langmuir 2002; 18(18): 7092-7094. doi: 10.1021/ la025911w
  • 22. Harbeck M, Erbahar DD, Gurol I, Musluoglu E, Ahsen V et al. Phthalocyanines as sensitive coatings for QCM sensors operating in liquids for the detection of organic compounds. Sensors and Actuators B: Chemical 2010; 150 (1): 346-354. doi: 10.1016/j.snb.2010.06.062
  • 23. Tarakci DK, Gurol I, Ahsen V. 2,2,3,3-Tetrafluoropropoxy substituted oxo-titanium phthalocyanines axially ligated with common MALDI matrix materials. Journal of Porphyrins and Phthalocyanines 2013; 17(06n07): 548-554. doi: 10.1142/S1088424613500399
  • 24. Yoshihiro T, Yukako T, Toshiaki K. Method for optical recording using medium containing metal phthalocyanine dye. Jpn. KokaiTokkyoKoho 1999: JP 11254827 A 19990921.
  • 25. Shoji M, Nishide H. Fluorophilic cobalt phthalocyanine-containing Nafion membrane: high oxygen permeability and proton conductivity in the membrane. Polymers for Advanced Technologies 2010; 21 (9): 646-650. doi: 10.1002/pat.1480
  • 26. Harbeck S, Emirik OF, Gurol I, Gurek AG, Ozturk ZZ et al. Understanding the VOC Sorption Processes on Fluoro Alkyl Substituted Phthalocyanines Using ATR FT-IR spectroscopy and QCM Measurements. Sensors and Actuators B: Chemical 2013; 176: 838-849. doi: 10.1016/j.snb.2012.08.020