Chaetocin enhances callus induction by decreasing the expression of major leaf polarity genes in Nicotiana tabacum

Chaetocin enhances callus induction by decreasing the expression of major leaf polarity genes in Nicotiana tabacum

Using chemicals known as inhibitors of chromatin remodeling enzymes is a useful approach in understanding the regulation machinery that contributes to the maintenance of or conversion to a pluri- and totipotent states of the cells in multicellular organisms. They can serve as tools to reveal the molecular and cellular mechanisms required for reprogramming. A deeper understanding of reprogramming pathways that drive the cell into a dedifferentiated state might help us enhance plant micropropagation and green biotechnology applications. Chaetocin is one of the histone methyltransferase inhibitors known as key drivers in several cellular processes. It was shown that chaetocin enhanced the reprogramming of human fibroblasts. Here, by using an analogy approach, we tested the effects of chaetocin on the postgermination growth and callus induction in Nicotiana tabacum for the first time. We found that chaetocin retarded the leaf development in N. tabacum seedlings but increased the callus formation when applied in the post-germination growth phase (1.4 fold). The expression of AS1, KAN1, YAB3, FIL, major leaf polarity genes, significantly decreased when seeds were treated with Ch during the post-germination growth phase by 69, 45, 46, 68%, respectively. We also observed that chaetocin could not replace 2,4-Dichlorophenoxyacetic acid as a callus inducing modulator. The present study is a pioneer, exhibiting valuable data to understand the molecular mechanisms underlying the effects of chaetocin and the unknown properties of histone-modifying enzymes. Hence, novel approaches can be developed by using high throughput methods to elucidate epigenetic mechanisms of cellular differentiation/dedifferentiation processes in plant systems.

___

  • Ahmad A, Zhang Y, Cao XF (2010). Decoding the epigenetic language of plant development. Molecular Plant 3 (4): 719-728. doi: 10.1093/mp/ssq026
  • Bannister AJ, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Research 21 (3): 381-395. doi: 10.1038/cr.2011.22
  • Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K et al. (2001). The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Research 29 (21): 4319-4333. doi:10.1093/nar/29.21.4319
  • Berenguer E, Bárány I, Solís M, Pérez-pérez Y, Risueño MC et al. (2017). Inhibition of histone H3K9 methylation by BIX-01294 promotes stress-induced microspore totipotency and enhances embryogenesis initiation. Frontiers in Plant Science 8: 1161. doi: 10.3389/fpls.2017.01161
  • Berr A, Shafiq S, Shen WH (2011). Histone modifications in transcriptional activation during plant development. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1809 (10): 567- 576. doi: 10.1016/j.bbagrm.2011.07.001
  • Bowman JL, Eshed Y (2000). Formation and maintenance of the shoot apical meristem. Trends in Plant Science 5 (3): 110-115. doi: 10.1016/S1360-1385(00)01569-7
  • Byrne ME, Simorowski J, Martienssen RA (2002). ASYMMETRIC LEAVES 1 reveals know gene redundancy in Arabidopsis. Development 129 (8): 1957-1965.
  • Casciello F, Windloch K, Gannon F, Lee JS (2015). Functional role of G9a histone methyltransferase in cancer. Frontiers in Immunology 6: 487. doi: 10.3389/fimmu.2015.00487
  • Chang Y, Zhang X, Horton JR, Upadhyay AK, Spannhoff A et al. (2009). Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nature Structural and Molecular Biology 16 (3): 312-317. doi: 10.1038/nsmb.1560
  • Cheng K, Xu Y, Yang C, Ouellette L, Niu L et al. (2020). Histone tales: Lysine methylation, a protagonist in Arabidopsis development. Journal of Experimental Botany 71 (3): 793-807. doi:10.1093/jxb/erz435
  • Cheng X, Collins RE, Zhang X (2005). Structural and sequence motifs of protein (histone) methylation enzymes. Annual Review of Biophysics and Biomolecular Structure 34: 267-294. doi: 10.1146/annurev.biophys.34.040204.144452
  • Cherblanc FL, Chapman KL, Brown R, Fuchter MJ (2013). Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nature Chemical Biology 9 (3): 136-137. doi: 10.1038/nchembio.1187
  • de la Paz Sanchez M, Aceves-García P, Petrone E, Steckenborn S, VegaLeón R et al. (2015). The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity. New Phytologist 208 (3): 684-694. doi: 10.1111/nph.13486
  • Ebrahimi A (2016). Histon 3 metillenmesinin yeniden programlanmadaki etkisinin incelenmesi. PhD, İstanbul Üniversitesi, İstanbul, Turkey (in Turkish).
  • Ebrahimi A, Sevinç K, Gürhan SG, Cribbs AP, Philpott M et al. (2019). Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. Nature Chemical Biology 15 (5): 519-528. doi: 10.1038/s41589-019-0264-z
  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004). Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131 (12): 2997- 3006. doi: 10.1242/dev.01186
  • Feng S, Jacobsen SE, Reik W (2010). Epigenetic reprogramming in plant and animal development. Science 330 (6004): 622-627. doi: 10.1126/science.1190614
  • Gaillochet C, Lohmann JU (2015). The never-ending story: From pluripotency to plant developmental plasticity. Development 142 (13): 2237-2249. doi: 10.1242/dev.117614
  • Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005). Identification of a specific inhibitor of the histone methyltransferase SU(Var)3-9. Nature Chemical Biology 1 (3): 143-145. doi: 10.1038/nchembio721
  • Hajheidari M, Koncz C, Bucher M (2019). Chromatin evolution-key innovations underpinning morphological complexity. Frontiers in Plant Science 10: 454. doi: 10.3389/fpls.2019.00454
  • Huang J, Zhang H, Yao J, Qin G, Wang F et al. (2016). BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction 151 (1): 39- 49. doi: 10.1530/REP-15-0460
  • Inácio V, Martins MT, Graça J, Morais-Cecílio L (2018). Cork oak young and traumatic periderms show PCD typical chromatin patterns but different chromatin-modifying genes expression. Frontiers in Plant Science 9: 1194. doi: 10.3389/fpls.2018.01194
  • Iwasaki M, Paszkowski J (2014). Epigenetic memory in plants. The EMBO Journal 33 (18): 1987-1998. doi: 10.15252/embj.201488883
  • Jenuwein T, Laible G, Dorn R, Reuter G (1998). SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences 54 (1): 80-93. doi: 10.1007/s000180050127
  • Jeong PS, Sim BW, Park SH, Kim MJ, Kang HG et al. (2020). Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity. International Journal of Molecular Sciences 21 (14): 4836. doi: 10.3390/ijms21144836
  • Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I et al. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Current Biology 17 (4): 379-384. doi: 10.1016/j.cub.2007.01.009
  • Jung HJ, Seo I, Casciello F, Jacquelin S, Lane SW et al. (2016). The anticancer effect of chaetocin is enhanced by inhibition of autophagy. Cell Death and Disease 7: e2098 doi: 10.1038/cddis.2016.15
  • Kumaran MK, Bowman JL, Sundaresan V (2002). YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14 (11): 2761-2770. doi: 10.1105/tpc.004911
  • Lai YS, Chen JY, Tsai HJ, Chen TY, Hung WC (2015). The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer Journal 5 (5): e313. doi: 10.1038/bcj.2015.37
  • Lee K, Seo PJ (2018). Dynamic epigenetic changes during plant regeneration. Trends in Plant Science 23 (3): 235-247. doi: 10.1016/j.tplants.2017.11.009
  • Li H, Soriano M, Cordewener J, Muiño JM, Riksen T et al. (2014). The histone deacetylase inhibitor Trichostatin A promotes totipotency in the male gametophyte. Plant Cell 26 (1): 195-209. doi: 10.1105/tpc.113.116491
  • Li Q, Wang M, Zhang Y, Wang L, Yu W et al. (2020). BIX-01294- enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis. Acta Biochimica et Biophysica Sinica 52 (10): 1131-1139. doi: 10.1093/abbs/gmaa097
  • Liu C, Lu F, Cui X, Cao X (2010). Histone methylation in higher plants. Annual Review of Plant Biology 61: 395-420. doi: 10.1146/annurev.arplant.043008.091939
  • Mozgova I, Köhler C, Hennig L (2015). Keeping the gate closed: Functions of the polycomb repressive complex PRC2 in development. The Plant Journal 83 (1): 121-132. doi: 10.1111/tpj.12828
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15 (3): 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Onder TT, Kara N, Cherry A, Sinha AU, Zhu N et al. (2012). Chromatinmodifying enzymes as modulators of reprogramming. Nature 483 (7391): 598-602. doi: 10.1038/nature10953
  • Osorio-Montalvo P, Sáenz-Carbonell L, De-la-Peña C (2018). 5- Azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. International Journal of Molecular Sciences 19 (10): 3182. doi: 10.3390/ijms19103182
  • Palermo BRZ, Dornelas MC (2020). Beyond YABBYs: A focus on versatility and interactivity. Tropical Plant Biology. doi: 10.1007/s12042-020-09275-y
  • Pontvianne F, Blevins T, Pikaard CS (2010). Arabidopsis histone lysine methyltransferases. Advances in Botanical Research 53: 1-22. doi: 10.1016/S0065-2296(10)53001-5
  • Ruta V, Longo C, Boccaccini A, Madia VN, Saccoliti F et al. (2019). Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. BMC Plant Biology 19: 429. doi: 10.1186/s12870-019- 2057-7
  • Sang YL, Cheng ZJ, Zhang XS (2018). Plant stem cells and de novo organogenesis. New Phytologist 218 (4): 1334-1339. doi: 10.1111/nph.15106
  • Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK et al. (2010). Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 22 (7): 2113-2130. doi: 10.1105/tpc.110.075853
  • Singh S, Singh A, Singh A, Mahima, Yadav S et al. (2020). Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis. Journal of Experimental Botany 71 (3): 778-792. doi: 10.1093/jxb/erz459
  • Su YH, Tang LP, Zhao XY, Zhang XS (2020). Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology 63 (1): 228-243. doi: 10.1111/jipb.12972
  • Sugimoto K, Gordon SP, Meyerowitz EM (2011). Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology 21 (4): 212-218. doi: 10.1016/j.tcb.2010.12.004
  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes and Development 16 (14): 1779-1791. doi: 10.1101/gad.989402
  • Thorstensen T, Fischer A, Sandvik SV, Johnsen SS, Grini PE et al. (2006). The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Research 34 (19): 5461-5470. doi: 10.1093/nar/gkl687
  • Thorstensen T, Grini PE, Aalen RB (2011). SET domain proteins in plant development. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1809 (8): 407-420. doi: 10.1016/j.bbagrm.2011.05.008
  • Vaijayanthi T, Pandian GN, Sugiyama H (2018). Chemical control system of epigenetics. Chemical Record 18 (12): 1833-1853. doi: 10.1002/tcr.201800067
  • Valente S, Lepore I, Dell’Aversana C, Tardugno M, Castellano S et al. (2012). Identification of PR-SET7 and EZH2 selective inhibitors inducing cell death in human leukemia U937 cells. Biochimie 94 (11): 2308-2313. doi: 10.1016/j.biochi.2012.06.003
  • Veiseth SV, Rahman MA, Yap KL, Fischer A, Egge-Jacobsen W et al. (2011). The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis. PLOS Genetics 7 (3): e1001325. doi: 10.1371/journal.pgen.1001325
  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science 12 (6): 245-252. doi: 10.1016/j.tplants.2007.04.002
  • Verza FA, Das U, Fachin AL, Dimmock JR, Marins M (2020). Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers 12 (6): 1664. doi: 10.3390/cancers12061664
  • Warghat AR, Thakur K, Sood A (2018). Plant stem cells: what we know and what is anticipated. Molecular Biology Reports 45 (6): 2897- 2905. doi: 10.1007/s11033-018-4344-z
  • Weng X, Cai M, Zhang Y, Liu Y, Liu C et al. (2019). Improvement in the in vitro development of cloned pig embryos after kdm4a overexpression and an H3K9me3 methyltransferase inhibitor treatment. Theriogenology 146: 162-170. doi: 10.1016/j.theriogenology.2019.11.027
  • Yadav RK, Perales M, Gruel J, Ohno C, Heisler M et al. (2013). Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Molecular Systems Biology 9: 654. doi: 10.1038/msb.2013.8
  • Yu JR, Lee CH, Oksuz O, Stafford JM, Reinberg D (2019). PRC2 is high maintenance. Genes and Development 33: 903-935. doi: 10.1101/gad.325050.119
  • Yu Y, Deng P, Yu B, Szymanski JM, Aghaloo T et al. (2017). Inhibition of EZH2 promotes human embryonic stem cell differentiation into mesoderm by reducing H3K27me3. Stem Cell Reports 9 (3): 752- 761. doi: 10.1016/j.stemcr.2017.07.016
  • Zhang H, Yue M, Zheng X, Gautam M, He S et al. (2018). The role of promoter-associated histone acetylation of Haem Oxygenase-1 (HO-1) and Giberellic Acid-Stimulated Like-1 (GSL-1) genes in heat-induced lateral root primordium inhibition in maize. Frontiers in Plant Science 9: 1520. doi: 10.3389/fpls.2018.01520
  • Zhou H, Liu Y, Liang Y, Zhou D, Li S et al. (2020). The function of histone lysine methylation related SET domain group proteins in plants. Protein Science 29 (5): 1120-1137. doi:10.1002/pro.3849
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ecological assessment of Burç Reservoir’s surface water (Turkey) using phytoplankton metrics and multivariate approach

Abuzer ÇELEKLİ, Gülümser ÖZPINAR

Integrating indicators of natural regeneration, enrichment planting, above-ground carbon stock, micro-climate and soil to asses vegetation succession in postmining reclamation in tropical forest

Trimanto, Lia HAPSARI, Sugeng BUDIHARTA

Running sigmas analysis of sampled molecular paraphyly in Pottiaceae (Bryophyta)

Richard H. ZANDER

Chaetocin enhances callus induction by decreasing the expression of major leaf polarity genes in Nicotiana tabacum

Ayyub EBRAHIMI, Nagihan ÖZSOY, Deniz GÜRLE, Baki YAMAN, Şule ARI

Taxonomic monograph of the tribe Nigelleae (Ranunculaceae): a group including ancient medicinal plants

Zübeyde UĞURLU AYDIN, Emel OYBAK DÖNMEZ, Ali A. DÖNMEZ

Investigation of the effects of overexpression of Novel_105 miRNA in contrasting potato cultivars during separate and combined drought and heat stresses

Melis YALÇIN, Zahide Neslihan ÖZTÜRK GÖKÇE

Using a supermatrix approach to explore phylogenetic relationships, divergence times, and historical biogeography of Saxifragales

Bryan T. DREW, Cara TARULLO, Jeffrey P. ROSE, Kenneth J. SYTSMA

Metabolite profiling, distribution of secretory structures, and histochemistry in Curculigo orchioides Gaertn. and Curculigo latifolia Dryand. ex W.T.Aiton

Diah RATNADEWI, Abdul Halim UMAR, Mohamad RAFI, Yohana Caecilia SULISTYANINGSIH, Hamim HAMIM

Bioassessment of water quality of surface waters using diatom metrics

Abuzer ÇELEKLİ, Mehmet YAVUZATMACA, Ömer LEKESİZ

Application of structural, functional, fluorescent, and cytometric indicators for assessing physiological state of marine diatoms under different light growth conditions

Natalia SHOMAN, Ekaterina SOLOMONOVA, Arkadii AKIMOV