Bioassessment of water quality of surface waters using diatom metrics

Bioassessment of water quality of surface waters using diatom metrics

Bioassessment of surface waters is one of the most important approaches to predict the deterioration of ecosystems and achieve environmental sustainability according to the application of the European Water Framework Directive. The present review emphasizes the importance of the bioassessment of freshwater quality especially running waters based on diatom metrics. Nutrient enrichment and hydromorphological alternation driven by human activities are the main factors for the ecological compromise of freshwater ecosystems. Currently, the bioassessment of the ecological condition of inland water bodies is adopted worldwide. Bioassessment is complementary to physicochemical and hydromorphological data for evaluating the ecological conditions of rivers; however, measuring all the physical and chemical changes is expensive and impractical. Therefore, monitoring biota helps to determine the changes occurring in ecosystems. Thus, diatoms are used as bioindicators to assess environmental conditions of the ecosystems, but their use requires great taxonomic knowledge, otherwise, the results will be biased. Many diatom indices have been developed based on the trophic weight and indicator values of diatoms in different ecoregions in the last decades. This review highlights the importance and advantages of using diatom metrics in the bioassessment of the ecological status of surface waters in the different ecoregions, especially running water. To analyze the complex response of diatom communities to environmental gradients and assess the quality of the ecosystem, multivariate statistical approaches are needed. The challenge here is how to define criteria for classes of water bodies in a biologically meaningful way. For this reason, biological condition gradient is suggested as an appropriate and effective approach to develop trophic criteria based on the relationships between nutrient concentrations and biological indicators of ecological conditions.

___

  • Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M et al. (2008). Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58 (5): 403-414.
  • Ács É, Szabó K, Tóth B, Kiss KT (2004). Investigation of benthic algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the Water Framework Directives. Acta Botanica Hungarica 46 (3-4): 255-278.
  • Álvarez-Blanco I, Blanco S, Cejudo-Figueiras C, Bécares E (2013). The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: design and validation. Environmental Monitoring and Assessment 185 (1): 969-981.
  • Andersen JH, Conley DJ, Hedal S (2004). Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Marine Pollution Bulletin 49 (4): 283-290.
  • Bae YJ, Kil HK, Bae KS (2005). Benthic macroinvertebrates for uses in stream biomonitoring and restoration. KSCE Journal of Civil Engineering 9 (1): 55-63.
  • Baert JM, Janssen CR, Sabbe K, De Laender F (2016). Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions. Nature Communications 7 (1): 1-8.
  • Ballesteros I, Castillejo P, Haro A, Montes C, Heinrich C et al. (2020). Genetic barcoding of Ecuadorian epilithic diatom species suitable as water quality bioindicators. Comptes Rendus Biologies. 343 (1): 41-52. doi: 10.5802/crbiol.2
  • Bauernfeind E, Moog O (2000). Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Assessing the Ecological Integrity of Running Waters, Springer, 149: 71-83.
  • Behrendt H, Opitz D (1996). Güteklassenbezogene Zielvorgaben zur Nährstoffreduzierung im Berliner Gewässersystem. IGBMitteilungen 1: 27-92.
  • Benito X, Fritz SC, Steinitz-Kannan M, Tapia PM, Kelly MA et al. (2018). Geo-climatic factors drive diatom community distribution in tropical South American freshwaters. Journal of Ecology 106 (4): 1660-1672.
  • Bere T (2016). Challenges of diatom-based biological monitoring and assessment of streams in developing countries. Environmental Science and Pollution Research 23 (6): 5477-5486.
  • Bere T, Tundisi JG (2011). Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil. Hydrobiologia 661 (1): 261-276.
  • Best J (2019). Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12 (1): 7-21.
  • Birk S, Bonne W, Borja A, Brucet S, Courrat A et al. (2012). Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31-41.
  • Böhm JS, Schuch M, Düpont A, Lobo EA (2013). Response of epilithic diatom communities to downstream nutrient increases in Castelhano Stream, Venâncio Aires City, RS, Brazil. Journal of Environmental Protection 4: 20-26.
  • Brack W, Hollender J, de Alda ML, Müller C, Schulze T et al. (2019). High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environmental Sciences Europe 31 (1): 62.
  • Bullock JM, Aronson J, Newton AC, Pywel R, Rey-Benayas JM (2011). Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends in Ecology and Evolution, 26 (10): 541-549.
  • Buwal (2002). Bundesamt Für Umwelt, Wald Und Landschaft: Methoden zur Untersuchung und Beurteilung der Fließgewässer: Kieselalgen Stufe F (flächendeckend) Entwurf Stand January, Bern.
  • Ccanccapa A, Masiá A, Navarro-Ortega A, Picó Y, Barceló D (2016). Pesticides in the Ebro River basin: occurrence and risk assessment. Environmental Pollution 211: 414-424.
  • Carayon D, Eulin-Garrigue A, Vigouroux R, Delmas F (2020). A new multimetric index for the evaluation of water ecological quality of French Guiana streams based on benthic diatoms. Ecological Indicators 113: 106248.
  • Carlisle DM, Hawkins CP, Meador MR, Potapova M, Falcone J (2008). Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. Journal of the North American Benthological Society 27 (1): 16-37.
  • Castillejo P, Chamorro S, Paz L, Heinrich C, Carrillo I et al. (2018). Response of epilithic diatom communities to environmental gradients along an Ecuadorian Andean River. Comptes Rendus Biologies 341 (4): 256-263.
  • Cemagref (1982). Etude des méthodes biologiques d’ appréciation quantitative de la qualité des eaux. - Rapport Q. E. Lyon. - A. F. Bassin Rhône Méditerranée-Corse, pp. 218.
  • Chakraborti L, McConnell KE (2012). Does ambient water quality affect the stringency of regulations? Plant-level evidence of the Clean Water Act. Land Economics 88 (3): 518-535.
  • Charles DF, Tuccillo AP, Belton T (2019). Use of diatoms for developing nutrient criteria for rivers and streams: a biological condition gradient approach. Ecological Indicators 96 (1): 258- 269.
  • Charles DF, Kelly MG, Stevenson RJ, Poikane S, Theroux S et al. (2021). Benthic algae assessments in the EU and the US: Striving for consistency in the face of great ecological diversity. Ecological Indicators 121: 107082.
  • Chen M, Li Y, Qi H, Wang L, Zhang A et al. (2019). The influence of season and Typhoon Morakot on the distribution of diatoms in surface sediments on the inner shelf of the East China Sea. Marine Micropaleontology 146: 59-74.
  • Chessman BC, Bate N, Gell PA, Newall P (2007). A diatom species index for bioassessment of Australian rivers. Marine and Freshwater Research 58 (6): 542-557.
  • Coring E, Schneider S, Hamm A, Hofmann G (1999). Durchgehendes Trophiesystem auf der Grundlage der Trophieindikation mit Kieselalgen. DVWK Materialien 6: 1-219.
  • Cozea A, Manea GC, Bucur E, Traistaru GAC (2020). Sensitive bioindicator plants studies, under the environmental conditions of climate change impact. In: Proceedings of the International Conference on Business Excellence; Bucharest, Romania. pp. 50-58.
  • Çelekli A, Arslanargun H (2019). Bio-assessment of surface waters in the south-east of Gaziantep (Turkey) using diatom metrics. Annales de Limnologie - International Journal of Limnology 55: 11.
  • Çelekli A, Bilgi F (2019). Bioassessing ecological status of surface waters in the Araban-Yavuzeli catchment (Turkey): application of diatom indices. Turkish Journal of Botany 43 (5): 597-607.
  • Çelekli A, Kapı E (2019). Ecoregion approach in the assessment of aquatic ecosystems in the west of Gaziantep (Turkey): Application of diatom metrics. Ecological Indicators 103: 373- 382.
  • Çelekli A, Kayhan S, Lekesiz Ö, Toudjani AA, Çetin T (2019a). Limno-ecological assessment of Aras River surface waters in Turkey: application of diatom indices. Environmental Science and Pollution Research 26 (8): 8028-8038.
  • Çelekli A, Toudjani AA, Gümüş EY, Kayhan S, Lekesiz HÖ et al. (2019b). Determination of trophic weight and indicator values of diatoms in Turkish running waters for water quality assessment. Turkish Journal of Botany 43 (1): 90-101.
  • Çelekli A, Lekesiz Ö (2020). Eco-assessment of West Mediterranean basin’s rivers (Turkey) using diatom metrics and multivariate approaches. Environmental Science and Pollution Research International 27: 27796-27806.
  • Çelekli A, Toudjani A, Lekesiz Ö, Çetin T (2018). Ecological quality assessment of running waters in the North Aegean catchment with diatom metrics and multivariate approach. Limnologica 73: 20-27.
  • Çetin T, Demir N (2019). The Use of phytobenthos for the ecological status assessment ın upper Sakarya Basin, Turkey. Applied Ecology and Environmental Research 17 (4): 10155-10172.
  • Dalu T, Cuthbert RN, Taylor JC, Magoro ML, Weyl OL et al. (2020). Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system. Science of the Total Environment 748: 142452.
  • Davies SP, Jackson SK (2006). The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications 16 (4): 1251-1266.
  • Delgado C, Pardo I, García L (2010). A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia 644 (1): 371-384.
  • Dell’Uomo A (2004). L’indice diatomico di eutrofizzazione/polluzione (EPI-D) nel monitoraggio delle azque correnti, line guida. Dipartimento di Botanica ed Ecologia, Universita di Camerino.
  • Descy JP (1979). A new approach to water quality estimation using diatoms. Nova Hedwigia 64: 305-323.
  • Descy JP, Coste M (1991). A test of methods for assessing water quality based on diatoms. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 24 (4): 2112-2116.
  • EC (2009). European Committee for Standardization, Water Framework Directive intercalibration technical report. Part 2. In: Poikane S (editor). Lakes. Ispra, Italy: European Commission, Joint Research Centre.
  • Edwards PM, Pan Y, Mork L, Thorne C (2020). Using diatoms to assess river restoration: a pilot study in Whychus Creek. USA. River Research and Applications 36 (10): 2089-2095.
  • Espinosa MA, Vélez-Agudelo C, Isla FI (2020). Diatom responses to natural and anthropogenic environmental changes in a Patagonian river, Argentina. Journal of South American Earth Sciences 102: 102677.
  • EU Water Framework Directive (WFD) (2000). Directive 2000/60/ EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities 327: 1-72.
  • Freitas NCW, Heinrich CG, Etges T, De Souza Celente G, Lobo EA (2020). Assessment of potential reference sites for evaluating the ecological status of subtropical and temperate Brazilian lotic systems using the epilithic diatom community. Environmental Science and Pollution Research 28 (7): 8698- 8708. doi: 10.1007/s11356-020-11136-w
  • Gao Y, Zhou F, Ciais P, Miao C, Yang T et al. (2020). Human activities aggravate nitrogen-deposition pollution to inland water over China. National Science Review 7 (2): 430-440.
  • Gómez N, Licursi M (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35 (2): 173-181.
  • Grenier M, Lavoie I, Rousseau AN, Campeau S (2010). Defining ecological thresholds to determine class boundaries in a bioassessment tool: the case of the Eastern Canadian Diatom Index (IDEC). Ecological Indicators 10 (5): 980-989.
  • Guiry MD, Guiry GM (2015). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. GuittonnyPhilippe A, Masotti V, Höhener P, Boudenne JL, Viglione J et al. (2014). Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environment International 64:1-16.
  • Harding WR, Taylor JC (2011). The South African Diatom Index (SADI): a preliminary index for indicating water quality in rivers and streams in southern Africa: Report to the Water Research Commission. Report No. 1701/1/11. Pretoria, South Africa: Water Research Commission.
  • Hausmann S, Charles DF, Gerritsen J, Belton TJ (2016). A diatombased biological condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams. Science of the Total Environment 562: 914-927.
  • Heinze A, Bongers F, Marcial NR, Barrios LG, Kuyper TW (2020). The montane multifunctional landscape: How stakeholders in a biosphere reserve derive benefits and address trade-offs in ecosystem service supply. Ecosystem Services 44: 101134.
  • Henrikson L, Medin M (1986). Biologisk bedömning av försurningspåverkan på Lelångens tillflöden och grundområden 1986. Aquaekologerna, Rapport till länsstyrelsen i Älvsborgs län.
  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M et al. (2010). The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the Total Environment 408 (19): 4007- 4019.
  • Higgins JV, Bryer MT, Khoury ML, Fitzhugh TW (2005). A freshwater classification approach for biodiversity conservation planning. Conservation Biology 19 (2): 432-445.
  • Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH et al. (2000). Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19 (1): 50-67.
  • Horton RK (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation 37 (3): 300-306.
  • Huang G, Chen Y, Wang X, Hughes RM, Xu L (2019) Using multiple indicators to assess spatial and temporal changes in ecological condition of a drinking water reservoir in central China. Annales de Limnologie - International Journal of Limnology 55 (9): 12.
  • Hurlimann J, Niederhauser P (2006). Methoden zur Untersuchung und Beurteilung der Fliessgewasser: Kieselalgen Stufe F (flachendeckend) Bundesamt fur Umwelt. BAFU, Bern.
  • John J (2015). A Beginner’s Guide to Diatoms. 2nd ed. Oberreifenberg, Germany: Koeltz Scientific Books. Juggins S, Birks HJB (2012). Quantitative environmental reconstructions from biological data. In: Birks H, Lotter A,
  • Juggins S, Smol J (editors). Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, Vol 5. Dordrecht, Netherlands: Springer, pp. 431-494. doi: 10.1007/978-94-007-2745-8_14
  • Karr JR, Chu EW (1998). Restoring life in running waters: better biological monitoring. Washington, DC, USA: Island Press.
  • Kelly MG, Chiriac G, Soare-Minea A, Hamchevici C, Birk S (2019). Defining ecological status of phytobenthos in very large rivers: A case study in practical implementation of the Water Framework Directive in Romania. Hydrobiologia 828 (1): 353-367.
  • Kelly MG, Juggins S, Guthrie R, Pritchard S, Jamieson J et al. (2008). Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology 53 (2): 403-422.
  • Kolkwitz R, Marson M (1909). Ökologie der tierischen Saprobien Internationale Revue der gesamten. Hydrobiologie 2: 126-152.
  • Kong W, Meng W, Zhang Y, Gippel C, Qu X (2013). A freshwater ecoregion delineation approach based on freshwater macroinvertebrate community features and spatial environmental data in Taizi River Basin, northeastern China. Ecological research 28 (4): 581-592.
  • Krammer K (2003). Cymbopleura, Delicata, Navicymbula, Gomphocymbula, Gomphocymbellopsis, Afrocymbella. In:
  • Lange-Bertalot H (editor). Diatoms of Europe: Diatoms of the European inland waters and comparable habitats, Vol 4. Ruggell, Liechtenstein: Gantner Verlag KG, p. 530.
  • Lange-Bertalot H (1979). Pollution tolerance as a criterion for water quality estimation. Nova Hedwigia 64: 285-304.
  • Lange-Bertalot H, Hofmann G, Werum M, Cantonati M (2017). Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment. In: Cantonati M, Kelly MG, Lange-Bertalot H (editors). SchmittenOberreifenberg, Germany: Koeltz Botanical Books.
  • Lavoie I, Hamilton PB, Wang Y-K, Dillon PJ, Campeau S (2009). A comparison of stream bioassessment in Québec (Canada) using six European and North American diatom-based indices. Nova Hedwigia 135: 37-56.
  • Lazaridou M, Ntislidou C, Karaouzas I, Skoulikidis N (2018). Harmonisation of a new assessment method for estimating the ecological quality status of Greek running waters. Ecological Indicators 84: 683-694.
  • Leclercq L, Maquet B (1987). Deux nouveaux indices diatomique et de qualité chimique des eaux courantes. Comparaison avec différents indices existants. Cahier de Biology Marine 28: 303- 310.
  • Lecointe C, Coste M, Prygiel J (1993). Omnidia: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509-513.
  • Lecointe C, Coste M, Prygiel J (2003). Omnidia 3.2. Diatom index software including diatom database with taxonomic names, references and codes of 11645 diatom taxa. Hydrobiologia 269 (270): 509-513.
  • Letten AD, Smith JR, Ke PJ, Anderson CB, Hendershot JN et al. (2018). A global test of ecoregions. Nature Ecology and Evolution 2 (12): 1889-1896.
  • Lenoir A, Coste M (1996). Development of a practical diatom index of overall water quality applicable to the French National Water Board Network. In: International Symposium, Volksbildungsheim Grillhof Vill, AUT, ; Innsbruck, Austria. pp. 29-43.
  • Levkov Z, Lange-Bertalot H, Mitić-Kopanja D, Reichardt E (2016). The Diatom Genus Gomphonema from the Republic of Macedonia, Vol. 8Schmitten-Oberreifenberg, Germany: Koeltz Botanical Books, p. 501
  • Lobo EA, Callegaro VLM, Hermany G, Bes D, Wetzel CA et al. (2004). Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnologica Brasiliensia 16 (1): 25-40.
  • Lobo EA, Wetzel CE, Ector L, Katoh K, Blanco S et al. (2010). Response of epilithic diatom community to environmental gradients in subtropical temperate Brazilian rivers. Limnetica Madrid 29 (2): 323-340.
  • Lobo EA, Schuch M, Heinrich CG, Da Costa AB, Düpon A et al. (2015). Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environmental monitoring and Assessment 187 (6): 1-13.
  • Lobo EA, Heinrich CG, Schuch M, Wetzel CE, Ector L (2016). Diatoms as Bioindicators in Rivers. In: River Algae. Cham, Switzerland: Springer, pp. 245-271.
  • Lobo E A, Freitas NW, Salinas VH, Naturales R (2019). Diatoms as bioindicators: Ecological aspects of the algae response to eutrophication in Latin America. Mexican Journal of Biotechnology 4 (1): 1-24.
  • Loucks OL (1962). A forest classification for the Maritime Provinces. Proceedings of the Nova Scotian Institute of Science 25 (2): 1958-1962.
  • Lowe RL (1974). Environmental requirements and pollution tolerance of freshwater diatoms (Vol. 1). Cincinnati, Ohio, Office of Research and Development, US Environmental Protection Agency: 670. Cincinnati, OH, USA: US Environmental Protection Agency, p. 340.
  • Martin G, Reyes F (2012). Diatoms as indicators of water quality and ecological status: sampling, analysis and some ecological remarks. Ecological Water Quality - Water Treatment and Reuse 9: 183-204.
  • Mbao EO, Gao J, Wang Y, Sitoki L, Pan Y et al. (2020). Sensitivity and reliability of diatom metrics and guilds in detecting the impact of urbanization on streams. Ecological Indicators 116: 106506.
  • McFarland BH, Hill BH, Willingham WT (1997). Abnormal Fragilaria spp.(Bacillariophyceae) in streams impacted by mine drainage. Journal of Freshwater Ecology 12 (1): 141-149.
  • Medlin LK (2016). Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55 (1): 79-103.
  • Merga LB, Mengistie AA, Faber JH, Van den Brink PJ (2020). Trends in chemical pollution and ecological status of Lake Ziway, Ethiopia: a review focussing on nutrients, metals and pesticides. African Journal of Aquatic Science 45 (4): 386-400.
  • Milošević D, Milosavljević A, Predić B, Medeiros AS, SavićZdravković D et al. (2020). Application of deep learning in aquatic bioassessment: Towards automated identification of non-biting midges. Science of the Total Environment 711: 135160.
  • Moldoveanu M, Sarbu D, Galie AC, Bojan V, Mezdroiu I (2017). Assessment of river water quality using an integrated hydromorphological, physico-chemical and biological approach. Advances in Environmental Sciences 9 (2): 158-172.
  • Morales NS, Zuleta GA (2020). Comparison of different land degradation indicators: Do the world regions really matter? Land Degradation and Development 31 (6): 721-733.
  • Munn MD, Waite I, Konrad CP (2018). Assessing the influence of multiple stressors on stream diatom metrics in the upper Midwest, USA. Ecological Indicators 85: 1239-1248.
  • Oeding S, Taffs KH (2017). Developing a regional diatom index for assessment and monitoring of freshwater streams in subtropical Australia. Ecological Indicators 80: 135-146.
  • Omernik JM (1987). Ecoregions of the conterminous United States. Annals of the Annals of the Association of American Geographers 77 (1): 118-125.
  • Omernik JM, Griffith GE (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management 54 (6): 1249-1266.
  • Pajunen V, Kahlert M, Soininen J (2020). Stream diatom assemblages as environmental indicators – a cross-regional assessment. Ecological Indicators 113: 106183.
  • Park J, Bergey EA, Han T, Pandey LK (2020). Diatoms as indicators of environmental health on Korean islands. Aquatic Toxicology 227: 105594.
  • Passy SI, Bode RW (2004). Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia 524 (1): 241-252.
  • Pham TL (2020). Using benthic diatoms as a bioindicator to assess rural-urban river conditions in tropical area: a case study in the Sai Gon River, Vietnam. Pollution 6 (2): 387-398.
  • Pinheiro C, Oliveira U, Rodrigues T, Oliva-Teles L, Vieira MN (2020). Assessing the ecological status of a Mediterranean river: benthic invertebrates and diatoms as complementary bioindicators. Limnetica 39 (1): 299-315.
  • Potapova M, Charles DF (2007). Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7 (1): 48-70.
  • Poulíčková A, Manoylov K (2019). Ecology of freshwater diatoms – current trends and applications. In: Seckbach J, Gordon R (editors). Diatoms: Fundamentals and Applications. Beverly, MA, USA: Scrivener Publishing LLC, pp. 289-309.
  • Prygiel J, Leveque L, Iserentant R (1996). Un nouvel ındice diatomique pratique pour l’évaluation de la qqualité des eaux en réseau de surveillance. Revue des Sciences de l’Eau 9 (1): 97-113.
  • Quevauviller P (2006). Chemical monitoring activity under the common implementation strategy of the WFD. Journal of Soils and Sediments 6 (1): 2-3.
  • Riato L, Leira M, Della Bella V, Oberholster P (2018). Development of a diatom-based multimetric index for acid mine drainage impacted depressional wetlands. Science of the Total Environment 612: 214-222.
  • Rott E, Pipp E, Pfister P (2003). Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algological Studies 110 (1): 91-115.
  • Rott E, Pipp E, Pfister P, Van Dam H, Ortler K et al. (1999). Indikationslisten für Aufwuchsalgen in Österreichischen Fließgewässern: Teil 2. Trophieindication. Bundesministerium f. Land-und Forstwirtschaft. Zahl 41.034/08-IVA 1/97, Wien.
  • Ruaro R, Gubiani ÉA, Hughes RM, Mormul RP (2020). Global Trends and challenges in multimetric indices of biological condition. Ecological Indicators 110: 105862.
  • Rumeau A, Coste M (1988). Introduction into the systematics of freshwater diatoms. For a useful generic diatomic index. Bulletin Francais de la Peche et de la Pisciculture (France) 61 (309): 1-69 (in French).
  • Ruwer DT, Bernardes MC, Rodrigues L (2018). Diatom responses to environmental changes in the Upper Paraná River floodplain (Brazil) during the last~ 1000 years. Journal of Paleolimnology 60 (4): 543-551.
  • Salinas-Camarillo, VH, Carmona-Jiménez J, Lobo EA (2020). Development of the Diatom Ecological Quality Index (DEQI) for peri-urban mountain streams in the Basin of Mexico. Environmental Science and Pollution Research 33:1-21.
  • Salmaso F, Quadroni S, Compare S, Gentili G, Crosa G (2019). Benthic diatoms as bioindicators of environmental alterations in different watercourses of northern Italy. Environmental Monitoring and Assessment 191 (3): 158.
  • Salomoni SE, Rocha O, Hermany G, Lobo EA (2011). Application of water quality biological indices using diatoms as bioindicators in the Gravataí river, RS, Brazil. Brazilian Journal of Biology 71 (4): 949-959.
  • Schiefele S, Kohmann F (1993). Bioindikation tier Trophie in Fliessgewässern. Umweltforschungsplan ties Bundesministers für Umwelt, Naturschutz und Realctorsicherheit. Wasserwirtschaft. Forschungsbericht 102 01504. Munich, Germany: Bayerisches Landesamt für Wasserwirtschaft, p. 211 (in German).
  • Heinrich CG, Palacios-Peñaranda ML, Peña-Salamanca E, Schuch M, Lobo EA (2019). Epilithic diatom flora in Cali River hydrographical basin, Colombia. Rodriguésia 70. doi: 10.1590/2175-7860201970041
  • Sládeček V (1986). Diatoms as indicators of organic pollution. Acta hydrochimica et Hydrobiologica 14 (5): 555-566.
  • Smith JR, Hendershot JN, Nova N, Daily GC (2020). The biogeography of ecoregions: Descriptive power across regions and taxa. Journal of Biogeography 47: 1413- 1426.
  • Smol JP, Stoermer EF (2010). The diatoms: applications for the environmental and earth sciences. (2nd ed. Cambridge, UK: Cambridge University Press, p. 686.
  • Soininen J (2007). Environmental and spatial control of freshwater diatoms—a review. Diatom Research 22 (2): 473-490.
  • Stefanidis K, Papaioannou G, Markogianni V, Dimitriou E (2019). Water quality and hydromorphological variability in Greek Rivers: a nationwide assessment with implications for management. Water 11 (8): 1680.
  • Steinberg C, Schiefele S (1988). Biological indication of trophy and pollution of running waters. Zeitschrift für Wasser-und Abwasser-Forschung 21 (6): 227-234.
  • Stenger-Kovács C, Buczko K, Hajnal E, Padisák J (2007). Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: trophic diatom index for Lakes (TDIL) developed in Hungary. Hydrobiologia 589 (1): 141-154.
  • Stevenson RJ, Pan Y (1999). Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP (editors). The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge, UK: Cambridge University Press, Cambridge.
  • Sumita M, Watanabe T (1983). New general estimation of river pollution using New Diatom Community Index (NDCI) as biological indicators based on specific composition of epilithic diatoms communities. Japanese Journal of Limnology 44 (4): 329-340.
  • Szczepocka E, Żelazna-Wieczorek J, Nowicka-Krawczyk P (2019). Critical approach to diatom-based bioassessment of the regulated sections of urban flowing water ecosystems. Ecological Indicators 104: 259-267.
  • Tapolczai K, Vasselon V, Bouchez A, Stenger-Kovács C, Padisák J et al. (2019). The impact of OTU sequence similarity threshold on diatom-based bioassessment: a case study of the rivers of Mayotte (France, Indian Ocean). Ecology and Evolution 9 (1): 166-179.
  • Tilman D, Isbell F, Cowle JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics 45: 471-493.
  • Tison J, Giraudel J-L, Coste M (2008). Evaluating the ecological status of rivers using an index of ecological distance: an application to diatom communities. Ecological Indicators 8 (3): 285-291.
  • Tomas D, Čurlin M, Marić AS (2017). Assessing the surface water status in Pannonian ecoregion by the water quality index model. Ecological Indicators 79: 182-190.
  • Torres-Franco AF, Alatrista-Góngora GR, Guzmán-Rodríguez NP, Calizaya-Anco JA, Mota CR et al. (2019). Physicochemical and diatom trophic state indexes: a complementary approach for improving water sustainability in a high Andean urban stream. Ecohydrology & Hydrobiology 19 (4): 577-587.
  • Toudjani AA, Çelekli A, Gümüş EY, Kayhan S, Lekesiz HÖ et al. (2017). A new diatom index to assess ecological quality of running waters: a case study of water bodies in western Anatolia. EDP Sciences. Annales de Limnologie - International Journal of Limnology 53: 333-343.
  • USEPA (2016). United States Environmental Protection Agency. A Practitioner’s guide to the biological condition gradient: A framework to describe incremental change in aquatic ecosystems. EPA-842-R-16-001. Washington, DC, USA: U.S. Environmental Protection Agency.
  • Van Dam H, Mertens A, Sinkeldam J (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28 (1): 117-133.
  • Vilmi A, Karjalainen SM, Hellsten S, Heino J (2016). Bioassessment in a metacommunity context: are diatom communities structured solely by species sorting? Ecological Indicators 62: 86-94.
  • Vogel RM (2011). Hydromorphology. Journal of Water Resources Planning and Management 137 (2): 147-149.
  • Wachnicka A, Gaiser E, Boyer J (2011). Ecology and distribution of diatoms in Biscayne Bay, Florida (USA): Implications for bioassessment and paleoenvironmental studies. Ecological Indicators 11 (2): 622-632.
  • Watanabe T, Asai K, Houki A (1986). Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - diatom assemblage index (DAIpo). Science of the Total Environment 55: 209-218.
  • Whittaker RH, Fairbanks CW (1958). A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology 39 (1): 46-65.
  • Wu JT (1999). A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79-87.
  • Xue H, Zheng B, Meng F, Wang Y, Zhang L et al. (2019). Assessment of aquatic ecosystem health of the Wutong River based on benthic diatoms. Water 11 (4): 727.
  • Zelinka M, Marvan P (1961). Zur präzisierung der biologischen klassifikation der reinheit fliessender gewässer. Archiv für Hydrobiologie 57: 389-407.
  • Zohary T, Poikane S, Cantonati M (2020). Assessing the ecological effects of hydromorphological pressures on European lakes. Inland Waters 10 (2): 241-255.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Running sigmas analysis of sampled molecular paraphyly in Pottiaceae (Bryophyta)

Richard H. ZANDER

Chaetocin enhances callus induction by decreasing the expression of major leaf polarity genes in Nicotiana tabacum

Ayyub EBRAHIMI, Nagihan ÖZSOY, Deniz GÜRLE, Baki YAMAN, Şule ARI

Investigation of the effects of overexpression of Novel_105 miRNA in contrasting potato cultivars during separate and combined drought and heat stresses

Melis YALÇIN, Zahide Neslihan ÖZTÜRK GÖKÇE

Application of structural, functional, fluorescent, and cytometric indicators for assessing physiological state of marine diatoms under different light growth conditions

Natalia SHOMAN, Ekaterina SOLOMONOVA, Arkadii AKIMOV

Taxonomic monograph of the tribe Nigelleae (Ranunculaceae): a group including ancient medicinal plants

Zübeyde UĞURLU AYDIN, Emel OYBAK DÖNMEZ, Ali A. DÖNMEZ

Bioassessment of water quality of surface waters using diatom metrics

Abuzer ÇELEKLİ, Mehmet YAVUZATMACA, Ömer LEKESİZ

Integrating indicators of natural regeneration, enrichment planting, above-ground carbon stock, micro-climate and soil to asses vegetation succession in postmining reclamation in tropical forest

Trimanto, Lia HAPSARI, Sugeng BUDIHARTA

Metabolite profiling, distribution of secretory structures, and histochemistry in Curculigo orchioides Gaertn. and Curculigo latifolia Dryand. ex W.T.Aiton

Diah RATNADEWI, Abdul Halim UMAR, Mohamad RAFI, Yohana Caecilia SULISTYANINGSIH, Hamim HAMIM

Using a supermatrix approach to explore phylogenetic relationships, divergence times, and historical biogeography of Saxifragales

Bryan T. DREW, Cara TARULLO, Jeffrey P. ROSE, Kenneth J. SYTSMA

Ecological assessment of Burç Reservoir’s surface water (Turkey) using phytoplankton metrics and multivariate approach

Abuzer ÇELEKLİ, Gülümser ÖZPINAR