Glioblastoma stem cells: a therapeutic challenge

Glioblastoma stem cells: a therapeutic challenge

The outcome for glioblastoma patients remains extremely poor, despite the advances in surgical and medical fields. It is hypothesized that glioblastoma progression, as well as tumor recurrence, is driven by a small number of cells called cancer stem cells (CSCs), which are characterized by their ability of self-renewal and proliferation, giving rise to progeny of transformation into multiple neuroepithelial lineages. Understanding the biology of CSCs is likely to explain why existing treatment strategies fail to affect the relatively quiescent and resistant CSC compartment. Here, we review the current knowledge on CSCs in glial tumors. In addition, we discuss the importance of the CSC hypothesis in the advancement of therapies for brain tumors.

___

  • Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, CortesSantiago N, Urquiza L, Jauregi P, Lopez de Munain A, Sampron N et al. (2011). Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6: e26740.
  • Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L et al. (2010). TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18: 655-668.
  • Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D (2011). SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics 8: 139-147.
  • Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, Lesniak MS, Ahmed AU (2014). Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Diff 21: 1119-1131.
  • Baer K, Eriksson PS, Faull RL, Rees MI, Curtis MA (2007). Sox-2 is expressed by glial and progenitor cells and Pax-6 is expressed by neuroblasts in the human subventricular zone. Exp Neurol 204: 828-831.
  • Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68: 6043-6048.
  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756-760.
  • Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A et al. (2007). Cyclopaminemediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25: 2524-2533.
  • Beier CP, Beier D (2011). CD133 negative cancer stem cells in glioblastoma. Front Biosci 3: 701-710.
  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007). CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010-4015.
  • Beier D, Schulz JB, Beier CP (2011). Chemoresistance of glioblastoma cancer stem cells--much more complex than expected. Mol Cancer 10: 128.
  • Benod C, Villagomez R, Filgueira CS, Hwang PK, Leonard PG, Poncet-Montange G, Rajagopalan S, Fletterick RJ, Gustafsson JA, Webb P (2014). The human orphan nuclear receptor tailless (TLX, NR2E1) is druggable. PLoS One 9: e99440.
  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al. (2013). The somatic genomic landscape of glioblastoma. Cell 155: 462-477.
  • Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013). CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31: 857-869.
  • Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488: 522-526.
  • Cheng L, Wu Q, Guryanova OA, Huang Z, Huang Q, Rich JN, Bao S (2011). Elevated invasive potential of glioblastoma stem cells. Biochem Bioph Res Co 406: 643-648.
  • Cheng L, Wu Q, Huang Z, Guryanova OA, Huang Q, Shou W, Rich JN, Bao S (2011). L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30: 800-813.
  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17: 165-172.
  • De Robertis A, Valensin S, Rossi M, Tunici P, Verani M, De Rosa A, Giordano C, Varrone M, Nencini A, Pratelli C et al. (2013). Identification and characterization of a small-molecule inhibitor of Wnt signaling in glioblastoma cells. Mol Cancer Ther 12: 1180-1189.
  • Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev NeurosciBasel 26: 148-165.
  • Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J et al. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28: 5-16.
  • Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D (2008). MIR-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Bioph Res Co 376: 86-90.
  • Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009). SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27: 40-48.
  • Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, TodorovaManova K, Gerald WL, Brogi E, Benezra R, Massague J (2007). ID genes mediate tumor reinitiation during breast cancer lung metastasis. P Natl Acad Sci USA 104: 19506-19511.
  • Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, Wu Q, Flavahan W, Levison B, Johansen ML et al. (2014). Cancer stem cell-specific scavenger receptor 36 drives glioblastoma progression. Stem Cells 32: 1746-1758.
  • Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T et al. (2010). Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120: 707-718.
  • Held-Feindt J, Schmelz S, Hattermann K, Mentlein R, Mehdorn HM, Sebens S (2012). The neural adhesion molecule L1CAM confers chemoresistance in human glioblastomas. Neurochem Int 61: 1183-1191.
  • Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG et al. (2015). Differential connexin function enhances self-renewal in glioblastoma. Cell Reports 11: 1031-1042.
  • Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009). Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5: 504-514.
  • Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011). Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286: 41434-41441.
  • Jan HJ, Lee CC, Shih YL, Hueng DY, Ma HI, Lai JH, Wei HW, Lee HM (2010). Osteopontin regulates human glioma cell invasiveness and tumor growth in mice. Neuro-Oncology 12: 58-70.
  • Kahlert UD, Bender NO, Maciaczyk D, Bogiel T, Bar EE, Eberhart CG, Nikkhah G, Maciaczyk J (2012). CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cell-related gene expression profile in in vitro propagated glioblastoma multiforme-derived cell line with a PNET-like component. Folia Neuropathol 50: 357-368.
  • Kim Y, Kim KH, Lee J, Lee YA, Kim M, Lee SJ, Park K, Yang H, Jin J, Joo KM et al. (2012). Wnt activation is implicated in glioblastoma radioresistance. Lab Invest 92: 466-473.
  • Kreso A, Dick JE (2014). Evolution of the cancer stem cell model. Cell Stem Cell 14: 275-291.
  • Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese O, Reifenberger G et al. (2007). Long-term survival with glioblastoma multiforme. Brain 130: 2596-2606.
  • Lamour V, Henry A, Kroonen J, Nokin MJ, von Marschall Z, Fisher LW, Chau TL, Chariot A, Sanson M, Delattre JY et al. (2015). Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo. Int J Cancer 137: 1047- 1057.
  • Lasorella A, Benezra R, Iavarone A (2014). The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 14: 77-91.
  • Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, Wu Q, Vasanji A, McLendon RE, Hjelmeland AB et al. (2010). Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6: 421-432.
  • Liu HK, Belz T, Bock D, Takacs A, Wu H, Lichter P, Chai M, Schutz G (2008). The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Gene Dev 22: 2473-2478.
  • Liu HK, Wang Y, Belz T, Bock D, Takacs A, Radlwimmer B, Barbus S, Reifenberger G, Lichter P, Schutz G (2010). The nuclear receptor tailless induces long-term neural stem cell expansion and brain tumor initiation. Gene Dev 24: 683-695.
  • Maness PF, Schachner M (2007). Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10: 19-26.
  • Matsuda Y, Ishiwata T, Yoshimura H, Hagio M, Arai T (2015). Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71. Cancer Lett 357: 602-611.
  • Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012). Cancer stem cells: an evolving concept. Nat Rev Cancer 12: 133-143.
  • O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, Tsatsanis A, Gallinger S, Dick JE (2012). ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 21: 777-792.
  • Omuro A, DeAngelis LM (2013). Glioblastoma and other malignant gliomas: a clinical review. JAMA-J Am Med Assoc 310: 1842- 1850.
  • Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K, Wu C, Chaudhary N, Sagher O (2012). Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117: 851-859.
  • Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM et al. (2014). The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology 16: 896-913.
  • Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. NeuroOncology 15 (Suppl. 2): ii1-56.
  • Park HJ, Kim JK, Jeon HM, Oh SY, Kim SH, Nam DH, Kim H (2010). The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells. Mol Cells 30: 403-408.
  • Perk J, Gil-Bazo I, Chin Y, de Candia P, Chen JJ, Zhao Y, Chao S, Cheong W, Ke Y, Al-Ahmadie H et al. (2006). Reassessment of id1 protein expression in human mammary, prostate, and bladder cancers using a monospecific rabbit monoclonal antiid1 antibody. Cancer Res 66: 10870-10877.
  • Perk J, Iavarone A, Benezra R (2005). Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5: 603-614.
  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9: 157-173.
  • Pietras A, Katz AM, Ekstrom EJ, Wee B, Halliday JJ, Pitter KL, Werbeck JL, Amankulor NM, Huse JT, Holland EC (2014). Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14: 357-369.
  • Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY (2012). Primary brain tumours in adults. Lancet 379: 1984- 1996.
  • Romero-Lanman EE, Pavlovic S, Amlani B, Chin Y, Benezra R (2012). Id1 maintains embryonic stem cell self-renewal by upregulation of Nanog and repression of Brachyury expression. Stem Cells Dev 21: 384-393.
  • Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, Wehner R, Schackert G, Schackert HK, Fussel M et al. (2007). Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Brit J Cancer 96: 1293-1301.
  • Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006). Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2: 494-503.
  • Scott JN, Rewcastle NB, Brasher PM, Fulton D, MacKinnon JA, Hamilton M, Cairncross JG, Forsyth P (1999). Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann Neurol 46: 183-188.
  • Seymour T, Nowak A, Kakulas F (2015). Targeting aggressive cancer stem cells in glioblastoma. Front Oncol 5: 159.
  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821-5828.
  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004). Identification of human brain tumour initiating cells. Nature 432: 396-401.
  • Smoll NR, Schaller K, Gautschi OP (2013). Long-term survival of patients with glioblastoma multiforme (GBM). J Clin Neurosci 20: 670-675.
  • Soroceanu L, Murase R, Limbad C, Singer E, Allison J, Adrados I, Kawamura R, Pakdel A, Fukuyo Y, Nguyen D et al. (2013). Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res 73: 1559-1569.
  • Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T (2000). Tissue factor, osteopontin, αv β3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer 82: 1967-1973.
  • Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu J, Kondo T (2011). Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci 102: 1306-1312.
  • Tang DG (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22: 457-472.
  • Tchorz JS, Tome M, Cloetta D, Sivasankaran B, Grzmil M, Huber RM, Rutz-Schatzmann F, Kirchhoff F, Schaeren-Wiemers N, Gassmann M et al. (2012). Constitutive Notch2 signaling in neural stem cells promotes tumorigenic features and astroglial lineage entry. Cell Death Dis 3: e325.
  • Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL (2014). Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23: 1985-1996.
  • Thiel G (2013). How Sox2 maintains neural stem cell identity. Biochem J 450: e1-2.
  • Vandeputte DA, Troost D, Leenstra S, Ijlst-Keizers H, Ramkema M, Bosch DA, Baas F, Das NK, Aronica E (2002). Expression and distribution of id helix-loop-helix proteins in human astrocytic tumors. Glia 38: 329-338.
  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98-110.
  • Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010). Notch promotes radioresistance of glioma stem cells. Stem Cells 28: 17-28
  • Wen PY, Kesari S (2008). Malignant gliomas in adults. New Engl J Med 359: 492-507.
  • Xie Q, Flavahan WA, Bao S, Rich J (2014). The tailless root of glioma: cancer stem cells. Cell Stem Cell 15: 114-116.
  • Xu Q, Yuan X, Liu G, Black KL, Yu JS (2008). Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26: 3018-3026.
  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al. (2009). IDH1 and IDH2 mutations in gliomas. New Engl J Med 360: 765-773.
  • Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23: 9392-9400.
  • Zhu Z, Khan MA, Weiler M, Blaes J, Jestaedt L, Geibert M, Zou P, Gronych J, Bernhardt O, Korshunov A et al. (2014). Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. Cell Stem Cell 15: 185-198.
  • Zou Y, Niu W, Qin S, Downes M, Burns DK, Zhang CL (2012). The nuclear receptor TLX is required for gliomagenesis within the adult neurogenic niche. Mol Cell Biol 32: 4811-4820.