Human embryonic stem cell N-glycan features relevant to pluripotency

Human embryonic stem cell N-glycan features relevant to pluripotency

Human embryonic stem cells (hESCs) and reprogrammed human induced pluripotent stem cells (hiPSCs) proliferate indefinitely in the undifferentiated state (self-renewal) and differentiate into the three germ layers (and ultimately into all cell types) (pluripotency). Branching in the N-glycan core of hESCs/hiPSCs is limited. hESCs/hiPSCs have high mannose-type and biantennary complex-type core structures, indicating immature stages of N-glycoproteins. The two branches on the core consist of type 2 N-acetyllactosamine (LacNAc), completed mainly with α 2,6-linked sialic acid. Complex terminal fucosylation, particularly α 1,2-linked fucosylation, is another characteristic N-glycosylation feature of hESCs/hiPSCs. All of these structural features are probably associated with the pluripotency of hESCs/hiPSCs. In differentiated cells, two-, three-, and four-branched N-glycan core structures are seen and N-acetylhexosamine compositions increase in the branches. The elongation and size of the branches in the N-glycan cores increase by the addition of poly-LacNAc chains and are the typical features during differentiation. As α 1,2-linked terminal fucosylation disappears, α 1,6-linked core fucosylation increases. It is necessary to know the pluripotency-associated glycans in order to identify and isolate the pluripotent cells from heterogeneous populations containing differentiated cells.

___

  • References Alisson-Silva F, de Carvalho Rodrigues D, Vairo L, Asensi KD, Vasconcelos-dos-Santos A, Mantuano NR, Dias WB, Rondinelli E, Goldenberg RC, Urmenyi TP et al. (2014). Evidences for the involvement of cell surface glycans in stem cell pluripotency and differentiation. Glycobiology 24: 458-468.
  • An HJ, Gip P, Kim J, Wu S, Park KW, McVaugh CT, Schaffer DV, Bertozzi CR, Lebrilla CB (2012). Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol Cell Proteomics 11: M111.010660.
  • André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ (2015). Lectins: getting familiar with translators of the sugar code. Molecules 20: 1788-823.
  • Bernardi A, Cheshev P. Interfering with the sugar code: design and synthesis of oligosaccharide mimics (2008). Chemistry 14: 7434-7441.
  • Bieberich E (2014). Synthesis, processing, and function of N-glycans in N-glycoproteins. Adv Neurobiol 9: 47-70.
  • Brockhausen I, Narasimhan S, Schachter H (1988) The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70: 1521-1533.
  • Chen HL, Li CF, Grigorian A, Tian W, Demetriou M (2009). T cell receptor signaling co-regulates multiple Golgi genes to enhance N-glycan branching. J Biol Chem 284: 32454-32461.
  • Chen S, Tan J, Reinhold VN, Spence AM, Schachter H (2002). UDP-N-acetylglucosamine:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I and UDP-Nacetylglucosamine:alpha-6-D-mannoside beta-1,2-Nacetylglucosaminyltransferase II in Caenorhabditis elegans. Biochim Biophys Acta 1573: 271-279.
  • Cocinero EJ, Çarçabal P (2015). Carbohydrates. Top Curr Chem 364: 299-333.
  • Cummings RD, Pierce JM (2014). The challenge and promise of glycomics. Chem Biol 21: 1-15.
  • D’Agostaro GA, Zingoni A, Moritz RL, Simpson RJ, Schachter H, Bendiak B (1995). Molecular cloning and expression of cDNA encoding the rat UDP-N-acetylglucosamine:alpha-6-Dmannoside beta-1,2-N-acetylglucosaminyltransferase II. J Biol Chem 270: 15211-15221.
  • Dodla MC, Young A, Venable A, Hasneen K, Rao RR, Machacek DW, Stice SL (2011). Differing lectin binding profiles among human embryonic stem cells and derivatives aid in the isolation of neural progenitor cells. PLoS One 6: e23266.
  • Draper, JS, Pigott C, Thomson JA, Andrews PW (2002). Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200: 249-258.
  • Fujitani N, Furukawa J, Araki K, Fujioka T, Takegawa Y, Piao J, Nishioka T, Tamura T, Nikaido T, Ito M et al. (2013). Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers. P Natl Acad Sci USA 110: 2105-2110.
  • Gabius HJ (2000). Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87: 108-121.
  • Gabius HJ, André S, Kaltner H, Siebert HC (2002). The sugar code: functional lectinomics. Biochim Biophys Acta 1572: 165-177.
  • Hamouda H, Kaup M, Ullah M, Berger M, Sandig V, Tauber R, Blanchard V (2014). Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J Proteome Res 13: 6144-6151.
  • Hasehira K, Tateno H, Onuma Y, Ito Y, Asashima M, Hirabayashi J (2012). Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 11: 1913-1923.
  • Heiskanen A, Hirvonen T, Salo H, Impola U, Olonen A, Laitinen A, Tiitinen S, Natunen S, Aitio O, Miller-Podraza H et al. (2009). Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconjugate J 26: 367-384.
  • Hemmoranta H, Satomaa T, Blomqvist M, Heiskanen A, Aitio O, Saarinen J, Natunen J, Partanen J, Laine J, Jaatinen T (2007). N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp Hematol 35: 1279-1292.
  • Higashi K, Asano K, Yagi M, Yamada K, Arakawa T, Ehashi T, Mori T, Sumida K, Kushida M, Ando S et al. (2014). Expression of the clustered NeuAcα2-3Galβ O-glycan determines the cell differentiation state of the cells. J Biol Chem 289: 25833-25843.
  • Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE et al. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572: 232-254.
  • Hu D, Tateno H, Hirabayashi J (2015). Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities. Molecules 20: 7637-7656.
  • Isaji T, Kariya Y, Xu Q, Fukuda T, Taniguchi N, Gu J (2010). Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion. Method Enzymol 480: 445-459.
  • Itskovitz-Eldor J (2011). A panel of glycan cell surface markers define pluripotency state and promote safer cell-based therapies. Cell Stem Cell 9: 291-292.
  • Iwaki J, Tateno H, Nishi N, Minamisawa T, Nakamura-Tsuruta S, Itakura Y, Kominami J, Urashima T, Nakamura T, Hirabayashi J (2011). The Galβ-(syn)-gauche configuration is required for galectin-recognition disaccharides. Biochim Biophys Acta 1810: 643-651.
  • Kaltner H, Gabius HJ (2012). A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 27: 397-416.
  • Karaçalı S, İzzetoğlu S, Deveci R (2014). Glycosylation changes leading to the increase in size on the common core of N-glycans, required enzymes, and related cancer-associated proteins. Turk J Biol 38: 754-771.
  • Kaszuba K, Grzybek M, Orłowski A, Danne R, Róg T, Simons K, Coskun Ü, Vattulainen I (2015). N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. P Natl Acad Sci USA 112: 4334-4339.
  • Kraushaar DC, Dalton S, Wang L (2013). Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem 394: 741-751.
  • Lanctot PM, Gage FH, Varki AP (2007). The glycans of stem cells. Curr Opin Chem Biol 11: 373-380.
  • Liang Y, Eng WS, Colquhoun DR, Dinglasan RR, Graham DR, Mahal LK (2014). Complex N-linked glycans serve as a determinant for exosome/microvesicle Cargo recruitment. J Biol Chem 289: 32526-32537.
  • Liang YJ, Kuo HH, Lin CH, Chen YY, Yang BC, Cheng YY, Yu AL, Khoo KH, Yu J (2010). Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. P Natl Acad Sci USA 107: 22564-22569.
  • Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015). Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 57: 1-13.
  • Miron CE, Petitjean A (2015). Sugar recognition: designing artificial receptors for applications in biological diagnostics and imaging. Chembiochem 16: 365-379.
  • Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012). The bisecting GlcNAc in cell growth control and tumor progression. Glycoconjugate J 29: 609-618.
  • Murphy PV, André S, Gabius HJ (2013). The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 18: 4026- 4053.
  • Nairn AV, Aoki K, de la Rosa M, Porterfield M, Lim JM, Kulik M, Pierce JM, Wells L, Dalton S, Tiemeyer M et al. (2012). Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J Biol Chem 287: 37835-37856.
  • Nakamura M (2008). Stem cell glycobiology. In: Taniguchi N, Suzuki A, Ito Y, Narimatsu H, Kawasaki T, Hase S, editors. Experimental Glycoscience: Glycobiology. Tokyo, Japan: Springer, pp. 262-264.
  • Nakatsu MN, Deng SX (2013). Enrichment of human corneal epithelial stem/progenitor cells by magnetic bead sorting using SSEA4 as a negative marker. Methods Mol Biol 1014: 71-77.
  • Natunen S, Satomaa T, Pitkänen V, Salo H, Mikkola M, Natunen J, Otonkoski T, Valmu L (2011). The binding specificity of the marker antibodies Tra-1-60 and Tra-1-81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology 21: 1125-1130.
  • Oliveira MS, Barreto-Filho JB (2015). Placental-derived stem cells: culture, differentiation and challenges. World J Stem Cells 7: 769-775.
  • Onuma Y, Tateno H, Hirabayashi J, Ito Y, Asashima M (2013). rBC2LCN, a new probe for live cell imaging of human pluripotent stem cells. Biochem Bioph Res Co 431: 524-529.
  • Pulsipher A, Griffin ME, Stone SE, Hsieh-Wilson LC (2015). Longlived engineering of glycans to direct stem cell fate. Angew Chem Int Edit 54: 1466-1470.
  • Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008). Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32: 870-877.
  • Rosu-Myles M, McCully J, Fair J, Mehic J, Menendez P, Rodriguez R, Westwood C (2013). The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo. Stem Cells Dev 22: 1387-1397.
  • Satomaa T, Heiskanen A, Mikkola M, Olsson C, Blomqvist M, Tiittanen M, Jaatinen T, Aitio O, Olonen A, Helin J et al. (2009). The N-glycome of human embryonic stem cells. BMC Cell Biol 10: 42.
  • Sheares BT, Carlson DM (1983). Characterization of UDP-galactose:2- acetamido-2-deoxy-D-glucose 3 beta-galactosyltransferase from pig trachea. J Biol Chem 258: 9893-9898.
  • Sheares BT, Lau JTY, Carlson DM (1982). Biosynthesis of galacosamine. J Biol Chem 257: 599-602.
  • Słomińska-Wojewódzka M, Sandvig K (2015). The Role of lectincarbohydrate interactions in the regulation of ER-associated protein degradation. Molecules 20: 9816-9846.
  • Smith DF, Cummings RD (2013). Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 12: 902-912.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.
  • Takamatsu S, Korekane H, Ohtsubo K, Oguri S, Park JY, Matsumoto A, Taniguchi N (2013). N-acetylglucosaminyltransferase (GnT) assays using fluorescent oligosaccharide acceptor substrates: GnT-III, IV, V, and IX (GnT-Vb). Methods Mol Biol 1022: 283-298.
  • Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR et al. (2011). An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29: 829-834.
  • Taniguchi N, Korekane H (2011). Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 44: 772-781.
  • Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K et al. (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 286: 20345-20353.
  • Taylor ME, Drickamer K (2011). Introduction to Glycobiology. 3rd ed. New York, NY, USA: Oxford University Press.
  • Toyoda M, Yamazaki-Inoue M, Itakura Y, Kuno A, Ogawa T, Yamada M, Akutsu H, Takahashi Y, Kanzaki S, Narimatsu H et al. (2011). Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 16: 1-11.
  • Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (2011). Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
  • Venable A, Mitalipova M, Lyons I, Jones K, Shin S, Pierce M, Stice S (2005). Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces. BMC Dev Biol 21: 5-15.
  • Wang YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, Nazor KL, Tran HT, Lynch CL, Leonardo TR et al. (2011). Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 21: 1551-1563.
  • Wearne KA, Winter HC, Goldstein IJ (2008). Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies. Glycoconjugate J 25: 121-136.
  • Wearne KA, Winter HC, O’Shea K, Goldstein IJ (2006). Use of lectins for probing differentiated human embryonic stem cells for carbohydrates. Glycobiology 16: 981-990.
  • Wright AJ, Andrews PW (2009). Surface marker antigens in the characterization of human embryonic stem cells. Stem Cell Res 3: 3-11.
  • Xu O, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012). Roles of N-acetylglucosaminyltransferase III in epithelialtomesenchymal transition induced by transforming growth factor β1 (TGF-β1) in epithelial cell lines. J Biol Chem 287: 16563-16574.
  • Yanagisawa M (2011). Stem cell glycolipids. Neurochem Res 36: 1623-1635.
  • Ye Z, Marth JD (2004). N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 14: 547-558.
  • Yip B, Chen SH, Mulder H, Höppener JW, Schachter H (1997). Organization of the human beta-1,2- Nacetylglucosaminyltransferase I gene (MGAT1), which controls complex and hybrid N-glycan synthesis. Biochem J 321: 465-474.
  • Zhang WL, Revers L, Pierce M, Schachter H (2000). Regulation of expression of the human beta-1,2- Nacetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 47: 511-518.
  • Zhong J, Martinez M, Sengupta S, Lee A, Wu X, Chaerkady R, Chatterjee A, O’Meally RN, Cole RN, Pandey A et al. (2015). Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway. Proteomics 15: 591-607.