Epigenetics: the guardian of pluripotency and differentiation

Epigenetics: the guardian of pluripotency and differentiation

Multicellular organisms comprise a variety of cell types that have the same genotype but distinct phenotypes. This diversity is possible because of the establishment of a specific epigenetic landscape that stabilizes gene expression profiles that are exclusive for a particular cell type. Accumulating data indicate that the maintenance, loss, and reacquisition of pluripotency are dynamically regulated by epigenetic alterations evoked by a subset of cellular factors. A better understanding of the epigenetic mechanisms involved in stem cell biology and differentiation will improve our ability to use these cells in the clinical context. Here we review current insights into the epigenetic mechanisms implicated in embryonic development and the induction of pluripotency.

___

  • Adamo A, Sese B, Boue S, Castano J, Paramonov I, Barrero MJ, Izpisua Belmonte JC (2011). LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 13: 652-659.
  • Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, BazettJones DP (2010). Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5: e10531.
  • Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B et al. (2011). Wdr5 mediates selfrenewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145: 183-197.
  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8: 376-388.
  • Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M, Cheloufi S, Stuart HT, Polo JM, Ohsumi TK, Borowsky ML et al. (2013). Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12: 699-712.
  • Apostolou E, Hochedlinger K (2013). Chromatin dynamics during cellular reprogramming. Nature 502: 462-471.
  • Bagci H, Fisher AG (2013). DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division. Cell Stem Cell 13: 265-269.
  • Barakat TS, Ghazvini M, de Hoon B, Li T, Eussen B, Douben H, van der Linden R, van der Stap N, Boter M, Laven JS et al. (2015). Stable X chromosome reactivation in female human induced pluripotent stem cells. Stem Cell Reports 4: 199-208.
  • Barrero MJ, Sese B, Marti M, Izpisua Belmonte JC (2013). Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem 288: 16110-16116.
  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326.
  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH et al. (2011). Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144: 439-452.
  • Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B et al. (2014). Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55: 277-290.
  • Chamberlain SJ, Yee D, Magnuson T (2008). Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26: 1496-1505.
  • Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, Liang H, Chen Y, Chen J, Wu Y et al. (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 45: 34-42.
  • Choufani S, Shuman C, Weksberg R (2010). Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 154C: 343- 354.
  • Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S et al. (2013). NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495: 370-374.
  • Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N, Simon C, Moore H, Harness JV et al. (2014). Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 24: 554-569.
  • de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ, Krijger PH, Festuccia N, Nora EP, Welling M et al. (2013). The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501: 227-231.
  • Deaton AM, Bird A (2011). CpG islands and the regulation of transcription. Genes Dev 25: 1010-1022.
  • Ding X, Wang X, Sontag S, Qin J, Wanek P, Lin Q, Zenke M (2014). The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. Stem Cells Dev 23: 931-940.
  • Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A et al. (2012). Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488: 652-655.
  • Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41: 1350-1353.
  • dos Santos RL, Tosti L, Radzisheuskaya A, Caballero IM, Kaji K, Hendrich B, Silva JC (2014). MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell 15: 102-110.
  • Eberharter A, Becker PB (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3: 224-229.
  • Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH et al. (2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2: 437-447.
  • Elsasser SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA (2015). Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522: 240-244.
  • Eram MS, Kuznetsova E, Li F, Lima-Fernandes E, Kennedy S, Chau I, Arrowsmith CH, Schapira M, Vedadi M (2015). Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Biochim Biophys Acta 1850: 1842-1848.
  • Fazzio TG, Huff JT, Panning B (2008). An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134: 162-174.
  • Flynn RA, Chang HY (2014). Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14: 752-761.
  • Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, Kou X, Zhang Y, Huang H, Jiang Y et al. (2013). Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12: 453-469.
  • Gao Y, Han Z, Li Q, Wu Y, Shi X, Ai Z, Du J, Li W, Guo Z, Zhang Y (2015). Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. FEBS J 282: 685-699.
  • Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011). Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12: 36-47.
  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E et al. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460: 863-868.
  • Gaspar-Maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G, Liu S, Costanzi C, Valle-Garcia D, Schaniel C et al. (2013). MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 4: 1565.
  • Gonzales-Cope M, Sidoli S, Bhanu NV, Won KJ, Garcia BA (2016). Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics 17: 95.
  • Gu B, Lee MG (2013). Histone H3 lysine 4 methyltransferases and demethylases in self-renewal and differentiation of stem cells. Cell Biosci 3: 39.
  • Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77-88.
  • Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6: 479-491.
  • Hiura H, Toyoda M, Okae H, Sakurai M, Miyauchi N, Sato A, Kiyokawa N, Okita H, Miyagawa Y, Akutsu H et al. (2013). Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet 14: 32.
  • Horne GA, Stewart HJ, Dickson J, Knapp S, Ramsahoye B, Chevassut T (2015). Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1. Stem Cells Dev 24: 879-891.
  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341: 651- 654.
  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26: 795-797.
  • Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. P Natl Acad Sci USA 108: 3642- 3647.
  • Jeon Y, Sarma K, Lee JT (2012). New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 22: 62-71.
  • Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R et al. (2008). The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4: e1000190.
  • Judson RL, Babiarz JE, Venere M, Blelloch R (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27: 459-461.
  • Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS et al. (2010). Mediator and cohesin connect gene expression and chromatin architecture. Nature 467: 430-435.
  • Kaji K, Caballero IM, MacLeod R, Nichols J, Wilson VA, Hendrich B (2006). The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol 8: 285-292.
  • Kanduri C (2016). Long noncoding RNAs: Lessons from genomic imprinting. Biochim Biophys Acta 1859: 102-111.
  • Kidder BL, Hu G, Zhao K (2014). KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation. Genome Biol 15: R32.
  • Kim DH, Marinov GK, Pepke S, Singer ZS, He P, Williams B, Schroth GP, Elowitz MB, Wold BJ (2015). Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16: 88-101.
  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature 467: 285-290.
  • Kingston RE, Narlikar GJ (1999). ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13: 2339-2352.
  • Kleger A, Mahaddalkar PU, Katz SF, Lechel A, Joo JY, Loya K, Lin Q, Hartmann D, Liebau S, Kraus JM et al. (2012). Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 142: 907-917.
  • Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A, Bernstein BE, Meissner A (2011). Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8: 96-105.
  • Latos PA, Helliwell C, Mosaku O, Dudzinska DA, Stubbs B, Berdasco M, Esteller M, Hendrich B (2012). NuRD-dependent DNA methylation prevents ES cells from accessing a trophectoderm fate. Biology Open 1: 341-352.
  • Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W et al. (2013). H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2: e01503.
  • Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, Broxmeyer HE (2013). Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells 31: 666-681.
  • Li E (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3: 662-673.
  • Li E, Bestor TH, Jaenisch R (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915-926.
  • Li M, Liu GH, Izpisua Belmonte JC (2012). Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 13: 524-535.
  • Li MA, He L (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays 34: 670-680.
  • Li Z, Yang CS, Nakashima K, Rana TM (2011). Small RNA-mediated regulation of iPS cell generation. EMBO J 30: 823-834.
  • Liang G, He J, Zhang Y (2012). Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol 14: 457-466.
  • Liang G, Zhang Y (2013). Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 23: 49-69.
  • Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42: 1113- 1117.
  • Loh YH, Zhang W, Chen X, George J, Ng HH (2007). Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 21: 2545-2557.
  • Luo M, Ling T, Xie W, Sun H, Zhou Y, Zhu Q, Shen M, Zong L, Lyu G, Zhao Y et al. (2013). NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 31: 1278- 1286.
  • Mackay DJ, Temple IK (2010). Transient neonatal diabetes mellitus type 1. Am J Med Genet C Semin Med Genet 154C: 335-342.
  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55-70.
  • Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB et al. (2010). Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28: 713-720.
  • Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y, Krupalnik V, Zerbib M, Amann-Zalcenstein D, Maza I et al. (2012). The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488: 409-413.
  • Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF, Smith A et al. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149: 590-604.
  • Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A, Zhang Y (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159: 884-895.
  • Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y (2010). Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464: 927-931.
  • Mattout A, Biran A, Meshorer E (2011). Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3: 341-350.
  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766-770.
  • Melton C, Judson RL, Blelloch R (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463: 621-626.
  • Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10: 105-116.
  • Messerschmidt DM, Knowles BB, Solter D (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28: 812-828.
  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature 454: 49-55.
  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553-560.
  • Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schubeler D (2008). Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30: 755-766.
  • Morozumi Y, Boussouar F, Tan M, Chaikuad A, Jamshidikia M, Colak G, He H, Nie L, Petosa C, de Dieuleveult M et al. (2015). Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J Mol Cell Biol (in press).
  • Okano M, Bell DW, Haber DA, Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257.
  • Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB et al. (2012). Chromatinmodifying enzymes as modulators of reprogramming. Nature 483: 598-602.
  • Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27: 3769-3779.
  • Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, Surani MA, Silva JC (2012). Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci 125: 6094-6104.
  • Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R et al. (2014). X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 159: 1681-1697.
  • Pastor WA, Aravind L, Rao A (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14: 341-356.
  • Pereira CF, Piccolo FM, Tsubouchi T, Sauer S, Ryan NK, Bruno L, Landeira D, Santos J, Banito A, Gil J et al. (2010). ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6: 547-556.
  • Plasschaert RN, Bartolomei MS (2014). Genomic imprinting in development, growth, behavior and stem cells. Development 141: 1805-1813.
  • Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J et al. (2012). A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151: 1617-1632.
  • Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, Mansour AA, Caspi I, Krupalnik V, Zerbib M et al. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502: 65-70.
  • Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012). NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J 31: 593-605.
  • Ruiz S, Diep D, Gore A, Panopoulos AD, Montserrat N, Plongthongkum N, Kumar S, Fung HL, Giorgetti A, Bilic J et al. (2012). Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. P Natl Acad Sci USA 109: 16196-16201.
  • Sen CK, Ghatak S (2015). miRNA control of tissue repair and regeneration. Am J Pathol 185: 2629-2640.
  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843-852.
  • Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y et al. (2014). Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14: 217-227.
  • Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B, Gentile L, Mann M, Scholer HR (2010). Chromatinremodeling components of the BAF complex facilitate reprogramming. Cell 141: 943-955.
  • Skene PJ, Henikoff S (2013). Histone variants in pluripotency and disease. Development 140: 2513-2524.
  • Soufi A, Donahue G, Zaret KS (2012). Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151: 994-1004.
  • Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M et al. (2013). Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol 15: 872-882.
  • Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465: 175-181.
  • Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh RM, Chen T, Ooi SS, Kim SY, Bestor TH, Shioda T et al. (2012). Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet 44: 398-405.
  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2: 230-240.
  • Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29: 443- 448.
  • Swygert SG, Peterson CL (2014). Chromatin dynamics: Interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta 1839: 728-736.
  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
  • Takikawa S, Ray C, Wang X, Shamis Y, Wu TY, Li X (2013). Genomic imprinting is variably lost during reprogramming of mouse iPS cells. Stem Cell Res 11: 861-873.
  • Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA et al. (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7: 329-342.
  • Tomoda K, Takahashi K, Leung K, Okada A, Narita M, Yamada NA, Eilertson KE, Tsang P, Baba S, White MP et al. (2012). Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell 11: 91- 99.
  • van Heeringen SJ, Akkers RC, van Kruijsbergen I, Arif MA, Hanssen LL, Sharifi N, Veenstra GJ (2014). Principles of nucleation of H3K27 methylation during embryonic development. Genome Res 24: 401-410
  • Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X, Miao YL, Zhou B, Han L, Fargo DC et al. (2014). INO80 facilitates pluripotency gene activation in embryonic stem cell selfrenewal, reprogramming, and blastocyst development. Cell Stem Cell 14: 575-591.
  • Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G et al. (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitaminC-dependent manner. Cell Stem Cell 9: 575-587.
  • Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40: 1478-1483.
  • Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H (2013). Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25: 69-80.
  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39: 457-466.
  • Wei Z, Gao F, Kim S, Yang H, Lyu J, An W, Wang K, Lu W (2013). Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13: 36-47.
  • Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009). Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41: 246- 250.
  • Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT, Cowley SM, Young RA (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482: 221-225.
  • Xie W, Song C, Young NL, Sperling AS, Xu F, Sridharan R, Conway AE, Garcia BA, Plath K, Clark AT et al. (2009). Histone H3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol Cell 33: 417-427.
  • Xu X, Smorag L, Nakamura T, Kimura T, Dressel R, Fitzner A, Tan X, Linke M, Zechner U, Engel W et al. (2015). Dppa3 expression is critical for generation of fully reprogrammed iPS cells and maintenance of Dlk1-Dio3 imprinting. Nat Commun 6: 6008.
  • Yamamizu K, Fujihara M, Tachibana M, Katayama S, Takahashi A, Hara E, Imai H, Shinkai Y, Yamashita JK (2012). Protein kinase A determines timing of early differentiation through epigenetic regulation with G9a. Cell Stem Cell 10: 759-770.
  • Yang XJ (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. BioEssays 26: 1076-1087.
  • Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG (2011). Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147: 1498-1510.
  • Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL et al. (2013). Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152: 642-654.
  • Zovoilis A, Smorag L, Pantazi A, Engel W (2009). Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells. Differentiation 78: 69-78.