The growth of Spirulina platensis in different culture system under greenhouse condition

Özet: Bu denemede, bir sera içinde bulunan farklı kültür düzeneklerinde üretilen Spirulina'mn büyüme karakteristiklerinin karşılaştırılması amaçlandı. Denemede, şeffaf bidonlar, polietilen torbalar ve raceway tipi havuzlar olmak üzere üç tip kültür düzeneği kullanıldı. Diğerlerine nazaran kültür sıcaklığının daha yüksek olması nedeniyle, bidon kültürlerinde daha yüksek hücre yoğunluğuna ulaşıldı. Deneme sonunda kuru ağırlık miktarı bidon kültürleri için 0.99 g L"1 iken diğerlerinde 0.5 g L"1 idi. Spesifik büyüme hızları bidon, torba ye havuz kültürleri için sırasıyla 0.32, 0.21 ve 0.20 gün-1 olarak bulundu. Deneme sonunda ölçülen protein miktarları ise bidon, torba ve havuz kültürleri için sırasıyla % 33.4, % 54.5 ve % 58.3 olarak bulundu. Bidon kültürlerindeki protein miktarlarının diğerlerine göre çok daha düşük bulunmasının nedeni, büyümenin daha hızlı olması ve kültürün durgunluk safhasında fazla kalması nedeniyle ortamdaki azotun tüketilmesi şeklinde yorumlandı. Sonuç olarak, küçük hacimli kültür sistemlerinin kullanılması, özellikle kış aylarında büyümeyi engelleyen en önemli faktör olan sıcaklığı arttıracaktır. Ayrıca, kültürlerde küçük hacim yanında kısa ışık yolu uzunluklarının da kullanımı daha yüksek bir üretim sağlayacaktır.

Spirulina platensis'in sera koşullarında farklı kültür sistemlerinde büyütülmesi

Abstract: We aimed in this experiment to compare the growth characteristics of Spirulina, which was cultivated in different culture vessels under greenhouse condition. Three types of culture vessels, i.e. transparent jars, polyethylene bags and raceway ponds, were used in the experiment. The jar cultures supported higher cell densities due to their higher culture temperature compared to the others. The dry weight amount in jar cultures was 0.99 g L"1 at the end of the experiment, while it was 0.5 g L"1 in the others. Specific growth rates were found to be 0.32, 0.21 and 0.20 day-1 in the jar, bag and pond cultures, respectively. The protein levels measured at the end of the experiment were 33.4, 54.5 and 58.3% for the jar, bag and pond cultures, respectively. The reason for the much lower protein amount in jar cultures was interpreted as the depletion of the nitrogen in the culture medium as a result of faster growth and the prolonged steady state. We concluded that the use of small volume cultures would increase the temperature faster, which is the main factor hindering growth especially in the winter period. Moreover, the use of short light-path lengths in addition to the smaller volumes in the cultures would support a higher productivity.

___

  • 1. Gladue RM, Maxey JE. Microalgal feeds for aquaculture. Journal of Applied Rhycology 6: 131-141, 1994.
  • 2. Cartens M, Molina E, Robles A et al. Eicosapentaenoic acid (20:4n-3) from the marine microalga Phaeodactylum tricornutum. Journal of the American Oil Chemists Society 73: 1025-1031,1996.
  • 3. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotech., 21: 210-216,2003.
  • 4. Hu Q. Industrial production of microalgal cell mass and secondary products - major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A. ed. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science Ltd.; Oxford, 2004: pp. 264-272.
  • 5. Cohen Z. The chemicals of Spirulina. In: Vonshak A. ed. Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor and Francis; London, 1997: pp. 175-204.
  • 6. Boussiba S, Richmond A. C-Phycocyanin as a storage protein in blue-green algae. Arch. Microbiol. 125: 143-147, 1980.
  • 7. Mahajan G, Kamat M. g-Linolenic acid production from 5. platensis. Appl. Microbiol. Biotechnol. 43: 466-469, 1995.
  • 8. Becker EW. Algae mass cultivation, production and utilization. Process Biochem. 16: 10-14, 1981.
  • 9. Belay A, Kato T, Ota Y. Spirulina (Arthrospira): potential application as an animal feed supplement. J. Appl. Phycol. 8: SOBSI 1, 1996.
  • 10. Wikdors GH, Ohno M. Impact of algal research in aquaculture. J. Phycol. 37:968-974, 2001.
  • 11. Zarrouk C. Contribution aTetude du cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitl., PhD, Paris, 1966.
  • 12. Lee YK. Commercial production of microalgae in the Asia-Pacific rim. J. Appl. Phycol. 9: 403-411, 1997.
  • 13. Torzillo G, Pushparaj B, Bocci F et al. Production of Spirulina biomass in closed photobioreactors. Biomass 11: 61-74, 1986.
  • 14. Hu Q, Guterman H, Richmond A. A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng. 51: 51-60, 1996.
  • 15. Tredici M, Chini Zitelli G, Biagiolini S et al. Novel photobioreactors for the mass cultivation of Spirulina spp. Bull. Inst. Oceanogr. Monaco 12: 89-96, 1993.
  • 16. Vonshak A. Microalgal biotechnology: Is it an economical success? In: Da Silva EJ, Ratledge C, Sasson A. eds. Biotechnology: Economic and Social Aspects. Cambridge University; 1992: pp. 70-80.
  • 17. Bennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419-435, 1973.
  • 18. Jimenez C, Cossio BR, Labella D et al. The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217: 179-190, 2003.
  • 19. Fernandez-Reiriz MJ, Perez-Camacho A, Ferreiro MJ et al. Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipid and fatty acids) of seven marine microalgae. Aquaculture 83: 17-37, 1989.
  • 20. Sarada R, Pillai MG, Ravishankar GA. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry 34: 795-801, 1998.
  • 21. Richmond A, Vonshak A, Arad SM. Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ. eds. Algae Biomass, Amsterdam, Elsevier/North Holland Biomedical Press; 1980: pp. 65-72.