Determination of fatty acids and volatile compounds in fruits of rosehip (Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques

Determination of fatty acids and volatile compounds in fruits of rosehip (Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques

: In this study, we aimed to compare fatty acid and volatile compound compositions of four rosehip species, namely Rosa pimpinellifolia, R. villosa, R. canina, and R. dumalis, by gas chromatography with flame ionization detector (GC/FID) and headspace and immersion solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS and Im-SPME/GC-MS) techniques. The total lipid contents in fruits of the rosehip species varied from 5.83% (R. villosa) to 7.84% (R. dumalis). A total of 21 fatty acids were detected and quantified. In all species, except R. canina, polyunsaturated fatty acids (PUFAs) predominated over saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Palmitic acid is the major SFA in R. villosa (5.50%), R. canina (8.27%), and R. dumalis (7.46%). Oleic acid is the most abundant MUFA, and linoleic and α-linolenic acids are the most abundant PUFAs. Sixtytwo volatile compounds were detected by the HS-SPME/GC-MS technique, and 54 volatile compounds were determined by the ImSPME/GC-MS technique. Fifty-three volatile components of rosehips have been detected for the first time in this study. While 19 acids, 9 aldehydes, 6 ketones, 18 alcohols, 5 esters, 2 terpenes, and 2 phenols were identified by HS-SPME/GC-MS, 20 acids, 5 aldehydes, 8 ketones, 13 alcohols, 5 esters, 1 terpene, and 2 phenols were identified by Im-SPME/GC-MS. The HS-SPME/GC-MS technique allowed identification of a larger number of volatile compounds and thus is more efficient than the Im-SPME/GC-MS technique.

___

  • Alver E, Demirci A, Ozcimder M (2012). Microextraction methods. J Eng Nat Sci 30: 75–90.
  • Amira EA, Guido F, Behija SE, Manel I, Nesrine Z, Ali F, Mohamed H, Noureddine HA, Lotfi A (2011). Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem 127: 1744–1754.
  • Aridogan BC, Baydar H, Kaya S, Demirci M, Ozbasar D, Mumcu E (2002). Antimicrobial activity and chemical composition of some essential oils. Arch Pharm Res 25: 860–864.
  • Arthur CL, Pawliszyn J (1990). Solid-phase microextraction with thermal desorption using silica optical fibers. Anal Chem 62: 2145–2148.
  • AOAC (1990). Official Methods of Analysis. 15th ed. Washington, DC, USA: AOAC.
  • Bajpai PK, Warghat AR, Sharma RK, Yadav A, Thakur AK, Srivastava RB, Stobdan T (2014). Structure and genetic diversity of natural populations of Morus alba in the Trans-Himalayan Ladakh Region. Biochem Genet 52: 137–152.
  • Baldwin EA (2002). Fruit flavor, volatile metabolism and consumer perceptions. In: Knee M, editor. Fruit Quality and Its Biological Basis. Boca Raton, FL, USA: CRC Press, pp. 89–106.
  • Barros L, Carvalho AM, Ferreira ICFR (2011). Exotic fruit as a source of improving the traditional use of Rosa canina fruit in Portugal. Food Res Int 44: 2233–2236.
  • Bastos C, Barros L, Duenas M, Calhelha RC, Queiroz MJRP, SantosBuelga C, Ferreira ICFR (2015). Chemical characterisation and bioactive properties of Prunus avium L.: the widely studied fruits and the unexplored stems. Food Chem 173: 1045–1053.
  • Berti MT, Johnson BL (2008). Physiological changes during seed development of cuphea. Field Crops Res 106: 163–170.
  • Bligh EG, Dyer WJ (1959). A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.
  • Cakir A (2003). Essential oil and fatty acid composition of the fruits of Hippophae rhamnoides L. (Sea buckthorn) and Myrtus communis L. from Turkey. Biochem Syst Ecol 32: 809–816.
  • Chahoud G, Aude YW, Mehta JL (2004). Dietary recommendations in the prevention and treatment of coronary heart disease: do we have the ideal diet yet? Am J Cardiol 94: 1260–1267.
  • Cheistophe A, Celine M (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chem 102: 375–384.
  • Chen MX, Chen XS, Feng BC (2004). GC-MS analysis of fruit aroma components of two apricot cultivars. Acta Hortic Sin 31: 663– 665.
  • Çınar I, Çolakoğlu AS (2005). Potential health benefits of rose hip products. Acta Hort 690: 253–257.
  • Cunnane S, Anderson M (1997). Pure linoleate deficiency in the rat: Influence on growth, accumulation of n-6 polyunsaturates, and (1–14C) linoleate oxidation. J Lipid Res 38: 805–812.
  • Davis PH (1972). Flora of Turkey and the East Aegean Islands. Vol. 4. Edinburgh, UK: Edinburgh University Press.
  • Demir N, Yildiz O, Alpaslan M, Hayaloglu AA (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT-Food Sci Technol 57: 126–133.
  • Dobson HEM, Bergstrom R, Bergstrom G, Groth I (1987). Pollen and flower volatiles in two Rosa species. Phytochemistry 26: 3171–3173.
  • Dunlevy JD, Kalua CM, Keyzers RA, Boss PK (2009). The production of flavour & aroma compounds in grape berries. In: RoubelakisAngelakis KA, editor. Grapevine Molecular Physiology & Biotechnology. Berlin, Germany: Springer Science+Business Media, pp. 293–340.
  • Engelfriet P, Hoekstra J, Hoogenveen R, Büchner F, van Rossum C, Verschuren M (2010). Food and vessels: the importance of a healthy diet to prevent cardiovascular disease. Eur J Prevent Cardiol 17: 50–55.
  • Ercisli S (2005). Rose (Rosa L. spp.) germplasm resources of Turkey. Genet Resour Crop Ev 52: 787–795.
  • Ercisli S (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem 104: 1379–1384.
  • Feng SG, Lu JJ, Gao L, Liu JJ, Wang HZ (2014). Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China. Biochem Genet 52: 127–136.
  • Goff SA, Klee HJ (2006). Plant volatile compounds: sensory cues for health and nutritional value. Science 311: 815–819.
  • Guimarães R, Barros L, Carvalho A, Ferreira ICFR (2010). Studies on chemical constituents and bioactivity of Rosa micrantha: an alternative antioxidants source for food, pharmaceutical, or cosmetic applications. J Agr Food Chem 58: 6277–6284.
  • Guney M, Oz AT, Kafkas E (2015). Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/ GC/MS/FID techniques. J Sci Food Agric 95: 1268–1273.
  • Ha YL, Grimm NK, Pariza MW (1989). Newly recognized anticarcinogenic fatty acids: identification and quantification in natural and processed cheeses. J Agr Food Chem 37: 75–81.
  • Haze S, Sakai K, Gozu Y (2002). Effects of fragrance inhalation on sympathetic activity in normal adults. Jpn J Pharmacol 90: 247–253.
  • Helbig D, Bohm V, Wagner A, Schubert R, Jahreis G (2008). Berry seed press residues and their valuable ingredients with special regard to black currant seed press residues. Food Chem 111: 1043–1049.
  • Houseknecht KL, Heuvel JPV, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP (1998). Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Bioph Res Co 244: 678–682.
  • Jelen HH, Majcher M, Dziadas M (2012). Microextraction techniques in the analysis of food flavor compounds: a review. Anal Chim Acta 738: 13–26.
  • Kafkas E, Paydaş S (2007). Evaluation and identification of volatile compounds of some promising strawberry types using HSSPME technique by GCMS. World J Agric Sci 3: 191–195.
  • Kalua CM, Boss PK (2010). Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (Vitis vinifera L.) from fruitset to harvest. Aust J Grape Wine R 16: 337–348.
  • Kataoka H, Lord HL, Pawliszyn J (2000). Applications of solid-phase microextraction in food analysis. J Chromatogr A 880: 35–62.
  • Kraujalyte V, Leitner E, Venskutonis PR (2012). Chemical and sensory characterisation of aroma of Viburnum opulus fruits by solid phase microextraction-gas chromatography– olfactometry. Food Chem 132: 717–723.
  • Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V (1999). High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 70: 1009–1015.
  • Ku TC, Robertson KR (2003). Rosa (Rosaceae). In: Wu ZY, Raven PH, editors. Flora of China. Beijing, China: Science Press, pp. 339–381.
  • Lai TNH, André C, Rogez H, Mignolet E, Nguyen TBT, Larondelle Y (2015). Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chem 168: 410–416.
  • Lara I, Miró RM, Fuentes T, Sayez G, Graell J, López ML (2003). Biosynthesis of volatile aroma compounds in pear fruit stored under long-term controlled-atmosphere conditions. Postharvest Biol Tec 29: 29–39.
  • López ML, Lavilla MT, Riba M, Vendrell M (1998). Comparison of volatile compounds in two seasons in apples: Golden Delicious and Granny Smith. J Food Quality 21: 155–166.
  • Macku C, Jennings WG (1987). Production of volatiles by ripening bananas. J Agric Food Chem 35: 845–848.
  • Mlcek J, Valsikova M, Druzbikova H, Ryant P, Jurikova T, Sochor J, Borkovcova M (2015). The antioxidant capacity and macroelement content of several onion cultivars. Turk J Agric For 39: 999–1004.
  • Nojavan S, Khalilian F, Kiaie FM, Rahimi A, Arabanian A, Chalavi S (2008). Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J Food Compos Anal 21: 300–305.
  • Nowak R (2005). Chemical composition of hips essential oils of some Rosa L. species. Z Naturforsch 60: 369–378.
  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006). Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141: 811– 824.
  • Paull RE, Irikura B, Wu P, Turano H, Chen NJ, Blas A, Fellman JK, Gschwend AR, Wai CM, Yu Q et al. (2008). Fruit development, ripening and quality related genes in the papaya genome. Trop Plant Biol 1: 246–277.
  • Pavlov A, Popov S, Kovacheva E, Georgiev M, Ilieva M (2005). Volatile and polar compounds in Rosa damascena Mill 1803 cell suspension. J Biotechnol 118: 89–97.
  • Ren JN, Tai YN, Dong M, Shao JH, Yang SZ, Pan SY, Fan G (2015). Characterisation of free and bound volatile compounds from six different varieties of citrus fruits Food Chem. 185: 25–32.
  • Riu-Aumatell M, Castellari M, López-Tamames E, Galassi S, Buxaderas S (2004). Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS. Food Chem 87: 627–637.
  • Rusanov K, Kovacheva N, Rusanova M, Atanassov I (2011). Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chem 129: 1851–1859.
  • Ruttanaprasert R, Banterng P, Jogloy S, Vorasoot N, Kesmala T, Kanwar RS, Holbrook CC, Patanothai A (2014). Genotypic variability for tuber yield, biomass, and drought tolerance in Jerusalem artichoke germplasm. Turk J Agric For 38: 570–580.
  • Sánchez-Salcedo EM, Ángel AES, Barrachina C, Martínez JJ, Hernández F (2016). Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries. Food Chem 190: 566–571.
  • Sanz C, Olias JM, Perez AG (1997). Aroma biochemistry of fruits and vegetables. In: Tomas-Barberan FA, Robins RJ, editors. Phytochemistry of Fruit and Vegetables. New York, NY, USA: Oxford University Press, pp. 125–155.
  • Simopoulos AP (1999). Essential fatty acids in health and chronic disease. J Am Coll Nutr 70: 560–569.
  • Soares FD, Pereira T, Marques MOM, Monteiro AR (2007). Volatile and nonvolatile chemical of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chem 100: 15–21.
  • Szentmihalyi K, Vinkler P, Lakatos B, Illes V, Then M (2002). Rosehip (Rosa canina L.) oil obtained from waste hip seeds by different extractions methods. Bioresource Technol 82: 195–201.
  • Uggla M, Gao X, Werlemark G (2003). Variation among and within dog rose taxa (Rosa sect. Caninae) in fruit weight, percentages of fruit flesh and dry matter, and vitamin C content. Acta Agr Scand B-S P 53: 147–155.
  • Uggla M, Gustavsson KE, Olsson ME, Nybom H (2005). Changes in colour and sugar content in rose hips (Rosa dumalis L. and Rosa rubiginosa L.) during ripening. J Hortic Sci Biotech 80: 204–208.
  • Vendramini AL, Trugo LC (2000). Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem 71: 195–198.
  • Yildiz O, Alpaslan M. (2012). Properties of rose hip marmalades. Food Technol Biotechnol 50: 98–106.
  • Zabetakis I, Gramshaw JW (1998). 1,2-Propanediol in strawberries and its role as a flavour precursor. Food Chem 61: 351–354.
  • Zhang X, Jiang YM, Peng FT, He NB, Li YJ, Zhao DC (2007). Changes of aroma components in ‘Hongdeng’ sweet cherry during fruit development. Sci Agric Sinica 40: 1222–1228.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Giovanna CUCCI, Giovanni LACOLLA, Carmine CRECCHIO, Silvia PASCAZIO, Donato De GIORGIO

GUNJEET KAUR, ARUNABH JOSHI, DEVENDRA JAIN, RAVISH CHOUDHARY, DIVYA VYAS

Evaluation of wheat genetic resources of Azerbaijan on normal and saline fields

Sevinj NURIYEVA, Elchin HAJIYEV, Ram SHARMA, Zeynal AKPAROV, Mehraj ABBASOV

Sevinj NURIYEVA, Zeynal AKPAROV, Elchin HAJIYEV, Mehraj ABBASOV, Ram C SHARMA

Foliar spray of selected plant growth regulators affected the biochemical and antioxidant attributes of spinach in a field experiment

Hassan MUNIR, Maryam ASLAM, Bushra SULTANA, Farooq ANWAR

Reham TAHTAMOUNI, Rida SHIBLI, Ayed AL-ABDALLAT, Tamara AL-QUDAH

Improving nitrogen-use and radiation-use efficiencies of C4 summer cereals by split nitrogen applications under an irrigated arid environment

Hülya DOĞAN, Naeem SARWAR, Muhammad ZIA-UL-HAQ, Ahmad Naeem SHAHZAD, Khadim HUSSAIN, Umair FAROOQ, Shahzad Usman KHAN, Atique-ur REHMAN, Muhammad Tauseef SULTAN, Abdul WAHEED, Muhammad Azam KHAN, Shabbir HUSSAIN, Shakeel AHMAD, Hakoomat ALI

Characterization of some bioactive compounds and physicochemical properties of grape varieties grown in Turkey: thermal degradation kinetics of anthocyanin

Osman SAĞDIÇ, Salih KARASU, Mehmet BAŞLAR, Mahmut KILIÇLI, Safa KARAMAN, Ahmet Abdullah US, Hasan YAMAN

ZEHRA TUĞBA MURATHAN, MOZGAN ZARIFIKHOSROSHAHI, NESİBE EBRU KAFKAS

Analysis of growth, oil yield, and carvacrol in Thymbra spicata L.after slow-growth conservation

Reham TAHTAMOUNI, Rida SHIBLI, Ayed AL-ABDALLAT, Tamara AL-QUDAH