Simulating Hydrological Patterns and Potential Irrigable Agricultural Lands Using Remote Sensing and GIS

ÇalışmadaÇanakkaleilininpotansiyelsulanabilirtarımalanlarınınSayısalYükseklikModeli (SYM) yardımıylabelirlenmesiamaçlanmıştır. SYM, 1:25000 ölçeklitopografikharitalarınsayısallaştırılmasıylaeldeedilmiştir. Hidrolojikanalizler ArcGIS yazılımıArcHydromodülükullanılarakyürütülmüştür. Akımyönleri, akımbirikimleri, havzahücreleri, havzapoligonları, drenajyollarıvedrenajnoktalarıbelirlenmiştir. Su vetarımsalalanlarınbelirlenmesiiçin Landsat TM 5 görüntüsükullanılarakAraziKullanımveBitkiÖrtüsü (AKBÖ) haritasıoluşturulmuştur.Sonuçlaragöre, çalışmaalanıiçerisinde 206 havzaolduğutespitedilmiştir. Bu havzalararasındansuyun 47 havzaüzerinde, 27 doğalveyainsanyapımısutoplamaünitesindebiriktiğibulunmuştur. Suyunbuünitelerden 136 havzayailetilebildiğigörülmüştür. Sözkonusuhavzalariçerisindebulunantarımalanlarındanarazikullanımkapasitesideğeri 1-3 veeğimdeğerleri %0-8 arasındadeğişentarımsalalanlar, çalışmadaPotansiyelSulanabilirAlanlarolaraktanımlanmıştır (131016 ha)

Hidrolojik Yapı ve Potansiyel Sulanabilir Tarım Alanlarının Uzaktan Algılama ve CBS Yardımıyla Simülasyonu

It was aimed to determine potentially irrigable lands of Canakkale province using Digital Elevation Model (DEM). DEM were obtained by digitizing 1:25000 scaled topographic maps to investigate the terrain features. Hydrologic analysis was conducted using ArcHydro module that attached with ArcGIS software. Flow directions, flow accumulations, catchment grids, catchment polygons, drainage lines and drainage points were delineated. In order to determine water bodies and agricultural lands, Land Use and Land Cover (LULC) map was generated using Landsat TM 5 image. According to the results, 206 catchments were identified within study area. Among these catchments, water found to be cumulated on 47 catchments within 27 natural or man-made water collection units. It was seen that water would be able to transfer from these units to 136 catchments. The agricultural lands within these catchments with land use capability class value varying 1-3, and slope values varying 0-8%, defined as Potentially Irrigable Lands in this study (131016 ha).

___

  • Bastawesy, M., Ali, R.R. and Nasr, A.H., 2008. The use of remote sensing and GIS for catchment delineation in northwestern coast of Egypt: An assessment of water resources and soil potential, Egyptian Journal of Remote Sensing and Space Sciences. 7: 3-16.
  • Canakkale Governorship, 20 www.canakkale.gov.tr Cihlar, J., 2000. Land cover mapping of large areas from satellites: status and research priorities, International Journal of Remote Sensing. 21(6-7): 1093-111.
  • Congalton, R.G. and Green, K., 1999. Assessing the accuracy of remotely sensed data: Principles and Practices. Lewis Publisher. Boca Raton.
  • Homer, C., Huang, C.Q., Yang, L.M., Wylie B., and Coan, M., 2004. Development of a 2001 national land-cover database for the United States, Photogrammetric Engineering and Remote Sensing. 70: 829-840.
  • Jensen, J.R., 2005. Introductory Digital Image Processing: a Remote Sensing Perspective. Upper Saddle River: Pearson Prentice Hall.
  • Jenson, S.K. and Domingue, J.O., 1988. Extracting Topographic Structure from Digital Elevation Data for Geographical Information System Analysis, Photogram. Eng. Remote Sens. 54: 1593-1600.
  • Maidment, D.R., 2002. Arc Hydro: GIS for Water Resources, Redlands, California: ESRI Press, Redlands, J.A.
  • Mark, D.M., 1983. Relations Between Fieldsurveyed Channel Networks and Mapbased Geomophometric Measures, Inez, Kentucky, Ann. Assoc. Am. Geogr. 73: 358-372.
  • Martz, L.W. and Garbrecht, J., 1999. The Treatment of Flat Areas and Depressions in Automated Drainage Analysis of Raster Digital Elevation Models, Hydrological Processes. 12: 8438
  • Meric, B.T., 2004. Su Kaynakları Yönetimi ve Türkiye, Jeoloji Mühendisliği Dergisi, 28(1): 27-38.
  • O’Callaghan, J. and Mark, D., 1984. The Extraction of Drainage Networks from Digital Elevation Data, Comput. Vision Graphics Image Process. 28: 328-344.
  • Ozdemir, H. and Bird, D., 2009. Evaluation of Morphometric Parameters of Drainage Networks Derived from Topographic Maps and DEM in Point of Floods, Environmental Geology. 56: 1405-1415.
  • Tarboton, D., Bras, R. and Rodriguez-Iturbe, I., 1991. On The Extraction of Channel Networks from Digital Elevation Data, Hydrol. Processes. 5: 81Vogelmann, J. E., Howard, S.M., Yang, L.M., Larson, C.R., Wylie B.K. and VanDriel N., 2004. Completion of the 1990s National Land Cover Data set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources, Photogrammetric Engineering and Remote Sensing, 67: 6506
  • Wise, S., 2000. Assessing the Quality for Hydrological Applications of Digital Elevation Models Derived from Contours. Hydrol. Process. 14: 1909-1929.
  • Xu, Z.X., Ito, K., Schultz, G.A. and Li, J.Y., 2001. Integrated Hydrologic Modelling and GIS in Water Resources Management, Journal of Computing in Civil Engineering. 15(3): 2172