Yeşilırmak Havzasında İklim Değişim Senaryoları Altında Gelecekteki Sediment Verimi ve Sediment Tutma Kapasitesinin InVEST Model ile Değerlendirilmesi

İklim değişikliğinin toprak erozyonu da dâhil olmak üzere daha şiddetli çevresel problemlere yol açması beklenmektedir. Bu araştırmada Yeşilırmak Havzasın da toprak erozyonu yoluyla meydana gelen sediment verimi ve sediment tutma kapasitesi üzerine iklim değişikliğinin etkilerinin InVEST sediment iletim modeli ile incelenmesine yöneliktir. Araştırmada İklim değişikliğinin toprak erozyonu üzerine etkilerinin incelenmesi için GFDL-CM3 (Jeofiziksel Akışkanlar Dinamiği Laboratuvarı İklim Modeli Sürüm III) genel dolaşım modelinin RCP4.5 ve RCP8.5 senaryoları kullanılmıştır. 2070’ li yıllara kadar Yeşilırmak Havzasında referans döneme göre sediment veriminde ve sediment tutunma oranlarında sırasıyla %9,48 ve %12,47 düzeyine varan azalışlar öngörülmüştür. Toprak erozyonu oranlarındaki azalmanın temel sebebi yağış miktarlarındaki düşüşlerden kaynaklanan yağış erozovitesindeki azalmadan kaynaklanmaktadır ve bu azalmanın etkisi sulak alan sistemlerine ve tarım arazilerine olumlu şekilde yansıması öngörülmüştür. Ayrıca, bu araştırma gelecekteki iklim değişikliğinin toprak erozyonuna olası etkilerinin mekânsal ve zamansal olarak tahmin edilmesinde InVEST model yaklaşımının avantajlarına işaret etmektedir.

Evaluation of Future Sediment Yield and Sediment Retention Capacity with InVEST Model under Climate Change Scenarios in Yeşilırmak Basin

Climate change is expected to cause more severe environmental problems, including soil erosion. This study aims to examine the effects of climate change on the sediment yield and sediment retention capacity through soil erosion in the Yeşilırmak Basin with the InVEST sediment delivery ratio model. RCP4.5 and RCP8.5 scenarios of the GFDL-CM3 (Geophysical Fluid Dynamics Laboratory Climate Model Version III) general circulation model were used to examine the effects of climate change on soil erosion. Decreases in the sediment yield and sediment retention rates of Yeşilırmak Basin were projected up to 9.48% and 12.47% in 2070, respectively. The main reason for the decrease in soil erosion rates is the decrease in rainfall erosivity resulting from the decrease in precipitation amounts, and the effect of this decrease is predicted to have a positive impact on wetland systems and agricultural lands. In addition, this research points to the advantages of the InVEST model approach in spatial and temporal estimation of the possible effects of future climate change on soil erosion.

___

  • Aneseyee AB, Soromessa T, Elias E. 2020. The effect of land use/land cover changes on ecosystem services valuation of Winike watershed, Omo Gibe basin, Ethiopia. Human and Ecological Risk Assessment: An International Journal, 26(10): 2608-2627.
  • Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, López A, Elorza FJ, Schuhmacher, M. 2013. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Science of the Total Environment, 458: 246-255.
  • Berberoglu S, Cilek A, Kirkby M, Irvine B, Donmez C. 2020. Spatial and temporal evaluation of soil erosion in Türkiye under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environmental monitoring and assessment, 192(8): 1-22.
  • Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, Ballabio C. 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36): 21994-22001.
  • Borselli L, Cassi P, Torri D. 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75: 268–277. https://doi.org/10.1016/ j.catena.2008.07.006
  • Bouguerra S, Jebari S. 2017. Identification and prioritization of sub-watersheds for land and water management using InVEST SDR model: Rmelriver basin, Tunisia. Arabian Journal of Geosciences, 10(15): 1-9.
  • Brooks KN, Ffolliott PF, Gregersen HM, DeBano LF. 2013. Hydrology and the management of watersheds - fourth edition (Oxford, UK: John Wiley and Sons, Inc.).
  • Brun P, Thuiller W, Chauvier Y, Pellissier L, Wüest RO, Wang Z, Zimmermann NE. 2020. Model complexity affects species distribution projections under climate change. Journal of Biogeography, 47(1): 130-142.
  • Chapman S, Birch CE, Galdos MV, Pope E, Davie J, Bradshaw C, Marsham JH. 2021. Assessing the impact of climate change on soil erosion in East Africa using a convection- permitting climate model. Environmental Research Letters, 16(8): 084006.
  • Das S, Bora PK, Das R. 2022. Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Modeling Earth Systems and Environment, 8(1): 1171-1177.
  • De Hipt FO, Diekkrueger B, Steup G, Yira Y, Hoffmann T, Rode M. 2018. Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa. Catena, 163: 63-77.
  • Delworth TL, Cooke WF, Adcroft A, Bushuk M, Chen JH, Dunne KA, Zhao M. 2020. SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection. Journal of Advances in Modeling Earth Systems, 12(3): e2019MS001895.
  • Duulatov E, Chen X, Amanambu AC, Ochege FU, Orozbaev R, Issanova G, Omurakunova G. 2019. Projected rainfall erosivity over Central Asia based on CMIP5 climate models. Water, 11(5): 897.
  • Erpul G, Şahin S, İnce K, Küçümen A, Akdağ MA, Demirtaş İ, Çetin E. 2018. Türkiye su erozyonu atlası. Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları, Ankara
  • Fan J, Motamedi A, Galoie M. 2021. Impact of C factor of USLE technique on the accuracy of soil erosion modeling in elevated mountainous area (case study: the Tibetan plateau). Environment, Development and Sustainability, 23(8): 12615- 12630.
  • Ganasri BP, Ramesh H. 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6): 953-961.
  • Hamel P, Chaplin-Kramer R, Sim S, Mueller C. 2015. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment, 524: 166- 177.
  • Haregeweyn N, Melesse B, Tsunekawa A, Tsubo M, Meshesha D, Balana BB. 2012. Reservoir sedimentation and its mitigating strategies: a case study of Angereb reservoir (NW Ethiopia). J Soils Sediments 12(2):291–305.
  • Hassen EE, Assen M. 2018. Land use/cover dynamics and its drivers in Gelda catchment, Lake Tana watershed, Ethiopia. Environmental Systems Research, 6(1): 1-13.
  • Housseyn B, Nekkache GA, Kamel K, Hamza B, Salah-Eddine T. 2021. Estimation of soil losses using RUSLE model and GIS tools: Case study of the Mellah catchment, Northeast of Algeria. Revista Romana de Inginerie Civila, 12(3): 266-289.
  • Issaka S, Ashraf MA. 2017. Impact of soil erosion and degradation on water quality: a review. Geo Ecol Landscapes 1(1):1–11.
  • Kanth TA, Zahoor-ul H. 2010. Prioritization of watersheds in Wular catchment for sustainable development and management of natural resources. Recent Research in Science and Technology 2(4):12–16
  • Khan M, Sharma A, Goyal MK. 2019. Assessment of future water provisioning and sediment load under climate and LULC change scenarios in a peninsular river basin, India. Hydrological Sciences Journal, 64(4): 405-419.
  • Kilic OM, Gunal H. 2021. Spatial-temporal changes in rainfall erosivity in Türkiye using CMIP5 global climate change scenario. Arabian Journal of Geosciences, 14(12): 1-13.
  • Li Z, Fang H. 2016. Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163: 94-117.
  • Lexartza-Artza I, Wainwright J. 2011. Making connections: changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms, 36: 1090-104
  • Mullan D, Favis-Mortlock D, Fealy R. 2012. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agricultural and Forest Meteorology, 156: 18-30.
  • Niu WJ, Feng ZK. 2021. Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain Cities Soc; 64:102562.
  • Panagos P, Borrelli P, Meusburger K, Van der Zanden EH, Poesen J, Alewell C. 2015. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ Sci Policy 51:23–34
  • Renard KG, Foster GR, Weesies G, McCool D, Yoder D. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) vol 703. United States Department of Agriculture Washington, DC.
  • Rhodes CJ. 2014. Soil erosion, climate change and global food security: challenges and strategies. Science progress, 97(2): 97-153.
  • Rodrigues JA, Viola MR, Alvarenga LA, de Mello CR, Chou SC, de Oliveira VA, Morais MA. 2020. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome. International Journal of Climatology, 40(5): 2511- 2526.
  • Roose E. 1996. Land Husbandry: Components and Strategy. Vol. 70. FAO, Rome. Available from: http://www.fao.org/docrep/ T1765E/t1765e0e.htm. [Last accessed on 2021 Jul 10].
  • Shabani F, Kumar L, Esmaeili A. 2014. Improvement to the prediction of the USLE K factor. Geomorphology, vol. 204, pp. 229–234. https://doi.org/10.1016/ j.geomorph. 2013.08.008
  • Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin- Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M, Mandle L, Hamel P, Vogl AL, Rogers L, Bierbower W, Denu D, Douglass J. 2018. InVEST 3.50.post225+h6aabb7740548 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
  • Teng H, Liang Z, Chen S, Liu Y, Rossel RAV, Chappell A, Shi Z. 2018. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment, 635: 673- 686.
  • Tosic R, Dragicevic S, Kostadinov S, Dragovic N. 2011. Assessment Of Soil Erosion Potential by The Usle Method: Case Study, Republıc of Srpska- Bih. Fresenius Environmental Bulletin, 20(8), 1910-1917.
  • Uzuner Ç, Dengiz O. 2020. Desertification risk assessment in Türkiye based on environmentally sensitive areas. Ecological Indicators, 114: 106295. https://doi.org/10.1016/j.ecolind. 2020.106295.
  • Vigerstol KL, Aukema JE. 2011. A comparison of tools for modeling freshwater ecosystem services. Journal of environmental management, 92(10): 2403-2409.
  • Vigiak O, Borselli L, Newham L, McInnes J, Roberts A. 2012. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138:74–88
  • Wu GL, Liu YF, Cui Z, Liu Y, Shi ZH, Yin R, Kardol P. 2020. Trade off between vegetation type, soil erosion control and surface water in global semi arid regions: A meta analysis. Journal of Applied Ecology, 57(5): 875-885.
  • Yang D, Kanae S, Oki T, Koike T, Musiake K. 2003. Global potential soil erosion with reference to land use and climate changes. Hydrological processes, 17(14): 2913-2928.
  • Yılman FE, Ozsayar M, Kaya P, Aydin S, Erpul G, Bayramin I. 2006. Determining relationship of RUSLE-R factor with total annual rainfall amount and MFI on a national scale in Türkiye. 18th International Soil Meeting (ISM) on “Soil Sustaining Life on Earth, Managing Soil and Technology”, May 22 –26, 2006 Sanlıurfa – Türkiye, Proceedings, Volume 1: 402 – 409.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)