Uzun Süreli Deneme Koşullar Altında, Artan Dozlarda Fosfor Uygulamasının ToprakKarbon, Azot ve Fosfor İçeriğine Etkisi

Çalışmanın amacı uzun süreli çakılı deneme koşullarında artan dozlarda P uygulamasının toprak C, N ve P içeriği ve elementlerin kendi aralarındaki etkileşimlerini araştırmaktır. Test edilen araştırma hipotezi ise; artan dozlarda P uygulaması toprak C, N ve P konsantrasyonlarını arttırmakta ve buna bağlı olarak bitkisel üretim artmaktadır. Deneme Çukurova Üniversitesi Ziraat Fakültesi Araştırma ve Uygulama Çiftliğinde 1998 de Arık toprak serisinde çakılı deneme olarak kurulmuş ve günümüze kadar buğday-mısır rotasyonu olarak devam ettirilmektedir. Söz konusu çalışmada her üretim sezonu öncesi 0 kg P2O5 ha-1(P0), 50 kg P2O5 ha-1(P50), 100 kg P2O5 ha-1(P100) ve 200 kg P2O5 ha-1(P200) konuları üç tekerrürlü olarak uygulanmaktadır. Çalışma Kasım 2017 de Adana-99 çeşidi Buğday (Triticum aestivum L.) ekilerek kurulmuş olup Mayıs 2018 de hasat edilmiştir. Hasat ile birlikte farklı toprak derinliklerinden (0-15 ve 15-30 cm) ve farklı bölgelerden (rizosfer ve rizosfer olmayan) toprak örnekleri alınarak analize hazır hale getirilmiştir. Toprak organik C (OC), inorganik C (IC), toplam C ve N içeriği ve P konsantrasyonları tayin edilmiştir. Araştırma Bulguları gösteriyor ki; her iki derinlikte rizosfer (R) ve rizosfer olmayan (NR) bölgelerde P içeriği bakımından istatistiksel olarak dikkate değer bir fark olup; kontrole kıyasla en iyi uygulama P200 uygulamasında elde edilmiştir. Artan P doz uygulaması ile toprak P içeriği doğrusal bir şekilde artmıştır. Toprak OC içeriği bakımından ise rizosfer ve rizosfer olmayan bölgelerde (15-30 cm derinlikte) istatistiksel olarak dikkate değer bir fark olup, kontrole kıyasalar en iyi uygulama P200 uygulamasında sağlanmıştır. Ayrıca, artan P doz uygulamasına bağlı olarak ortalama toprak OC, toplam N ve C içeriği artış göstermekte olup sonuçlar hipotezimizi destekler niteliktedir.

Impact of Long Term Phosphorus Doses Application on Soil Carbon, Nitrogen and Phosphorus Concentration

The aim of study is to investigate; the effect of increasing several doses P application on soil C, N and P concentration in Long term experiment conditions. Tested hypothesis; increasing P doses application increases soil C, N and P concentration, consequently plant yield can increase. The experiment has establish at University of Çukurova, Faculty of Agriculture, Research and Application field on Arık soil series from since 1998 until update. Four doses of P applied; such as 0 kg P2O5 ha-1(P0), 50 kg P2O5 ha-1(P50), 100 kg P2O5 ha-1(P100) and 200 kg P2O5 ha-1(P200) with tree replications. Under rain fed condition Adana-99 species wheat (Triticum aestivum L.) seeds were sown in November 2017 and harvested at May 2018. Soil samples were taken at different depth (0-15 cm and 15-30 cm) of rhizosphere and non-rhizosphere part at harvest. Soil P concentrations, organic C (OC), inorganic C (IC), soil total carbon C and N were analyzed. Result shown that there is a statistically difference as P concentration, especially in both depth of rhizosphere and non-rhizosphere soils, the best application is P200 compared to the control. As the P dose increased, also soil P content increased linearly. In terms of soil OC content, there was a statistically significant difference at a depth of 15-30 cm in rhizosphere and non-rhizosphere soilsand, the best practice was got at P200 application compared to control treatment. In addition, due to increasing doses of P application, the mean soil OC, total N and C content increased. The founded results are support our hypothesis.

___

Brust GE. 2019. Chapter 9 - Management Strategies for Organic Vegetable Fertility. In: Biswas, D., Micallef, S.A. (Eds.), Safety and Practice for Organic Food. Academic Press, pp. 193-212.

Cordell D, Drangert J-O, White S. 2009. The story of phosphorus: global food security and food for thought. Global environmental change 19: 292-305.

Güzel N, Gülüt K, Büyük G. 2002. Toprak verimliliği ve gübreler. Bitki Besin Elementleri Yönetimine Giriş. Çukurova Üniv. Ziraat Fak. Genel Yayın.

He YT, Zhang WJ, Xu MG, Tong XG, Sun FX, Wang JZ, Huang SM, Zhu P, He XH. 2015. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of The Total Environment 532: 635-644.

Islam MM, Hossain MF, Mia MM, Islam MS, Bhuiyan MS, Talukder JA, Kader M. 2019. Long-term fertilization effect of organic carbon and total nitrogen on floodplain soil. International Journal of Advanced Geosciences 7: 139-141.

Kanazawa S, Asakawa S, Takai Y. 1988. Effect of fertilizer and manure application on microbial numbers, biomass, and enzyme activities in volcanic ash soils: I. Microbial numbers and biomass carbon. Soil Science and Plant Nutrition 34: 429- 439.

Leinweber P, Kruse J, Baum C, Arcand M, Knight JD, Farrell R, Jandl, G. 2013. Advances in understanding organic nitrogen chemistry in soils using state-of-the-art analytical techniques. In Advances in agronomy (Vol. 119, pp. 83-151). Academic Press.

Lin L, Xu F, Ge X, Li Y. 2019. Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. In Advances in Bioenergy (Vol. 4, pp. 121-181). Elsevier.

Melillo JM, Field CB, Moldan B. 2003. Interactions of the major biogeochemical cycles: global change and human impacts. Island Press.

Michaels AF. 2003. The ratios of life. American Association for the Advancement of Science.

Paulsen HM, Köpke U, Oberson A, Rahmann G. 2016. Phosphorus the predicament of organic farming. Phosphorus in Agriculture: 100% Zero. Springer, pp. 195-213.

Qiu S, Gao H, Zhu P, Hou Y, Zhao S, Rong X, Zhang Y, He P, Christie P, Zhou W. 2016. Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil and Tillage Research 163: 255-265.

Qiu S, Ju X, Ingwersen J, Qin Z, Li L, Streck T, Christie P, Zhang F. 2010. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil and Tillage Research 107: 80-87.

Schnug E, De Kok LJ. (Eds.). 2016. Phosphorus in agriculture: 100% zero. Dordrecht: Springer.

Schnug E, Haneklaus SH. 2016. The enigma of fertilizer phosphorus utilization. Phosphorus in Agriculture: 100% Zero. Springer, pp. 7-26.

Tian H, Chen G, Zhang C, Melillo JM, Hall CA. 2010. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data. Biogeochemistry 98: 139-151.

Turgut MM, Koca YK. 2019. Farklı toprak işleme yöntemlerinin iki farklı toprak serisinde CO2 salımına etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 7: 51-56.

Valadares RV, Neves JCL, Costa MD, Smethurst PJ, Peternelli LA, Jesus GL, Cantarutti RB, Silva IR. 2018. Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil. Biogeosciences 15: 4943-4954.

Van Aken B. 2011. Transgenic plants and associated bacteria for phytoremediation of organic pollutants.

Walker T, Adams A. 1958. Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil science 85: 307-318.

Wang S, Adhikari K, Wang Q, Jin X, Li H. 2018. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators 84: 263-272.

Yli-Halla M, Schick J, Kratz S, Schnug E. 2016. Determination of plant available P in soil. Phosphorus in Agriculture: 100% Zero. Springer, pp. 63-93.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)