Elma ve Erwinia amylovora İnteraksiyonlarında Etkili Proteinler

Erwinia amylovora’nın neden olduğu ateş yanıklığı hastalığı, Rosaceae familyasından yaklaşık 140 bitkide enfeksiyon yapabilmekte ve tüm dünyada yumuşak çekirdekli meyve yetiştiriciliği açısından büyük bir tehdit oluşturmaktadır. E. amylovora, konukçularında hastalığa neden olabilmesi için amylovoran ve Tip III salgı sistemlerine (T3SS) ihtiyaç duymaktadır. AmsB, AmsD, AmsE, AmsF, AmsG, AmsJ, AmsI ve AmsK proteinleri, bir amylovoran birimi oluşturmak için farklı galaktoz glukuronik asit ve piruvil alt birimlerinin lipit taşıyıcıya bağlanmasında rol oynarlar. E. Amylovora tarafından salgılanan T3SS proteinleri, HrpA HrpN, HrpW, AvrRpt2EA, HopC1 ve DspA/E’ dir. E. amylovora’nın tek efektörü olan DspA/E, pilusun oluşumu sırasında T3SS yoluyla salgılanmaktadır. E. amylovora’nın şaperon proteini ise IA sınıfı içerisinde yer alan DsB/F’dir. Eop1 (dış membran proteini), E. amylovora salgı proteinlerinden biri olarak karakterize edilmiştir. Harpinlere ek olarak, E. amylovora’nın Hrp-salgı sistemi yoluyla patojenisite proteini DspE ve OrfB proteinleri salgılanmaktadır. E. amylovora, bir Hrp pilusu oluşturmaktadır ve bu da yapısal bir protein olan HrpA, tarafından meydana gelmektedir. Patojene karşı direnç kazandırmak amacıyla elma ve armutta klonlanan ve eksprese edilen antimikrobiyal proteinleri kodlayan genler; attacin E, cecropins ve lizozimlerdir. Elmada, E. amylovora enfeksiyonu ile PR2, PR5 ve PR8 proteinlerinin ifadesi artmaktadır. Yine elmalardaki HIPM proteini, E. amylovora HrpN proteini ile etkileşim göstermekte olup HIPM proteini çiçeklerde, yapraklarda ve sürgünlerde olduğundan daha fazla miktarda bulunmaktadır. Ayrıca E. amylovora efektör proteini DspA/E ile etkileşime giren dört elma proteini (DIPMs) dayanıklılıkta etkili role sahiptirler. Bitki ve patojen arasındaki etkileşimin anlaşılabilmesi için konukçuda patojeni tanıyan proteinlerin yanı sıra enfeksiyon sonucu oluşan sinyal sistemi ve bitki savunma mekanizmasının da anlaşılması ile mümkün olacaktır. Bu çalışmada E. amylovora’nın elmalarda enfeksiyonu sonucu patogenezle ilişkili proteinlerin rolleri ortaya konulmaya çalışılmıştır.

Effected Proteins in Apple and Erwinia amylovora Interactions

Fire blight disease caused by Erwinia amylovora can infect almost 140 plants of the Rosaceae family and poses a great threat to pome fruits growing all over the world. It needs amylovoran and Type III secretion systems (T3SS) to cause disease in host plants. AmsB, AmsD, AmsE, AmsF, AmsG, AmsJ, AmsI and AmsK proteins are involved in the binding of different galactose, glucuronic acid and pyruvyl subunits to the lipid carrier to form an amylovoran unit. T3SS proteins secreted by E. amylovora are HrpA HrpN, HrpW, AvrRpt2EA, HopC1 and DspA/E. DspA/E, the sole effector of E. amylovora, is secreted by during the formation of pilus T3SS. The chaperone protein of E. amylovora is DsB/F, which is in the IA class. EopB (outer membrane protein) has been characterized as one of the secretory proteins of E. amylovora. In addition to the harpins, the pathogenicity protein DspE and OrfB proteins are secreted via the Hrp-secretory system of E. amylovora. E. amylovora forms a Hrp pilus, which is produced by the structural protein HrpA. Genes encoding antimicrobial proteins cloned and expressed in apples and pears for impart resistance to the pathogen, attacin E are cecropins and lysozymes. The expression of PR2, PR5 and PR8 proteins is increased with E. amylovora infection in apple. Again, the HIPM protein in apples interacts with the E. amylovora HrpN protein, and the HIPM protein is found in higher amounts in flowers than leaves and shoots. In addition, four apple proteins (DIPMs) that interact with E. amylovora effector protein DspA/E have an effective role in endurance. In order to understand the interaction between the plant and the pathogen, it will be possible to understand the proteins that recognize the pathogen in the host, as well as the signal system and plant defense mechanism resulting from the infection. In this study, the roles of proteins associated with pathogenesis as a result of infection of E. amylovora in apples were tried to be revealed.

___

Abdul-Kader AM, Bauer DW, Beer SV, Norelli JL, Aldwinckle HS. 1999. Evaluation of the hrpN gene for increasing resistance to fire blight in transgenic apple. Acta Horticulturae 489: 247–250. DOI: 10.17660/ActaHortic. 1999.489.40

Aćimović SG, Zeng Q, McGhee GC, Sundin G, Wise J. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Frontiers in Plant Science, 6. DOI: https://doi.org/ 10.3389/fpls.2015.00016

Agrios GN. 1997. Plant Pathology, Fourth Edition, Academic Press., San Diego, CA USA, 93-112, 192-193. Ahl P, Benjoma A, Samson R, Gianinazzi S. 1981. Phytopath. Z., 102:201- 212. DOI: https://doi.org/10.1111/j.1439-0434. 1981.tb03381.x

Aldwinckle H, Ko K, Norelli JL, Brown SK, During K. 1998. Enhanced resistance to fire blight of apple lines transgenic for attacin E and T4 lysozyme genes. In: 7th International Congress of Plant Pathology. ICPP, Edinburgh, Vol. 3, p. 5. 3. 17.

Aldwinckle HS, Borejsza-Wysocka EE, Malnoy M, Brown SK, Norelli JL, Beer SV, Meng X, He SY, Jin QL. 2003. Development of fire blight resistant apple cultivars by genetic engineering. Acta Horticulturae 622: 105–111. DOI: 10.17660/ActaHortic.2003.622.7

Al‐Karablieh N, Weingart H, Ullrich MS. 2009. The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora. Microbial biotechnology, 2(4): 465-475. DOI: https://doi.org/10.1111/j.1751-7915.2009.00095.x

Anonim, 2020. Tarım Ürünleri Piyasaları, https://arastirma. tarimorman.gov.tr. Erişim tarihi: 10. 11. 2020.

Baker CJ, Orlandi EW, Mock NM. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amyłovora, elicits active oxygen production in suspension cells. Plant Physiol. 102: 1341-1344. DOI: https://doi.org/ 10.1104/pp.102.4.1341

Barny M A, Gaudriault S, Brisset MN, Paulin JP. 1999. Hrp secreted proteins: Their role in pathogenicity and HR elicitation. Acta Hortic. 489: 353-357.

Barny MA, 1995. Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on host plants and elicit variable hypersensitive reactions on tobacco. Eur. J. Plant Pathol. 101: 333-340.

Beer SV, Meng X, Oh CS, Kim WS, Bonasera JM. 2006. Apple proteins that interact with proteins of Erwinia amylovora. Plant and Animal Genome 14th Conference. January 14–18, 2006, San Diego, CA, USA.

Bellemann P, Bereswill S, Berger S, Geider K. 1994. Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int. J. Biol. Macromol., 16: 290–296. DOI: https://doi.org/10.1016/0141- 8130(94)90058-2

Bellemann P, Geider K. 1992. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J. Gen. Microbiol., 138: 931–940. DOI: https://doi.org/10.1099/00221287-138-5-931

Bogdanove AJ, Beer SV, Bonas U, Boucher CA, Collmer A, Coplin DL, Van Gijsegem F. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Molecular microbiology, 20 (3): 681-683. DOI: https://doi.org/10.1046/j.1365-2958.1996.5731077.x

Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Colimer A, Beer SV. 1998. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. USA 95: 1325-1330. DOI: https://doi.org/10.1073/ pnas.95.3.1325

Boman J, Hultmark D. 1987. Cell-free immunity in insects. Annual Review of Microbiology 41: 103–126. DOI: https://doi.org/10.1146/annurev.mi.41.100187.000535

Bonasera JM, Meng X, Beer SV. 2006. Interaction of DspE/A, a pathogenicity/avirulence protein of Erwinia amylovora, with pre-ferredoxin from apple and its relationship to photosynthetic efficiency. Acta Hortic. 704: 473-477. DOI: 10.17660/ActaHortic.2006.704.74

Boureau T, El Maarouf-Bouteau H, Garnier A, Brisset MN, Perino C, Pucheu I, Barny MA. 2006. DspA/E, a type III effector essentiaf for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol. Plant-Microbe Interact. 19: 16-24.

Büttner D, Bonas U. 2006. Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr Opin Microbiol 9: 193–200. DOI: https://doi.org/10.1016/ j.mib.2006.02.006

Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset MN, Paulin JP, Durel CE. 2005. Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111(1): 128–135. DOI: 10.1007/s00122- 005-2002-z

Camacho Henriquez A, Sänger HL. 1982. Analysis of acidextractable tomato leaf proteins after infection with a viroid, two viruses and a fungus and partial purification of the ‘pathogenesis-related’ protein p14, Arch. Virol., 74: 181-196. DOI: https://doi.org/10.1007/BF01995265

Campa M, Piazza S, Righetti L, Oh CS, Conterno L, Borejsza- Wysocka E, Malnoy M. 2019. HIPM is a susceptibility gene of Malus spp.: reduced expression reduces susceptibility to Erwinia amylovora. Molecular Plant-Microbe Interactions, 32(2): 167-175. DOI: https://doi.org/10.1094/ MPMI-05-18- 0120-R

Carlsson A, Engstrom P, Palva ET, Bennich H. 1991. Attacin an antibacterial protein from Hyalophora cecropia inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infection Immunity 59: 3040–3045.

Çetin Ş, Bastas KK. 2015. Erwinia amylovora Enfeksiyonu Sonrası Elma, Armut ve Ayva Çeşitlerinde Konukçu Protein Miktarlarının Belirlenmesi, Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 3(3): 154-163. DOI: https://doi.org/ 10.24925/turjaf.v3i3.154-163.246

Darcan Ö, Özkanca R. 2007. OmpC-OmpF porin proteins expression of Escherichia coli in nutrient broth and the role of EnvZ, OmpR, H-NS, AcP and RpoS on this expression. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, ISSN 1302-3055.

De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits THM. 2011. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 12: 576.

De Wit PJGM, Bakker JD. 1980. Differential changes in soluble tomato leaf proteins after inoculation with virulent and avirulent races of Cladosporium fulvum (syn. Fulvia fulva). Physiological plant pathology, 17(2): 121-130. DOI: https://doi.org/10.1016/0048-4059(80)90045-4

Deckers T, Schoofs H. 2008. Status of the pear production in Europe. Acta Hortic 800: 95–105. DOI: 10.17660/ ActaHortic.2008.800.8

Dellagi A, Brisset MN, Paulin JP, Expert D. 1998. Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant Microbe Interact 11: 734–742. DOI: https://doi.org/ 10.1094/MPMI.1998.11.8.734

Durel CE, Denancé C, Brisset M. N. 2009. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52: 139–147. DOI: https://doi.org/ 10.1139/G08-111

During K. 1996. Genetic engineering for resistance to bacteria in transgenic plants by introduction of foreign genes. Molecular Breeding 2: 297–305.

Eastgate JA. 2000. Erwinia amylovora: the molecular basis of fireblight disease. Molecular plant pathology, 1(6): 325-329. DOI: 10.1046/j.1364-3703.2000.00044.x Euphytica 77, 123– 8.

Expert D. 1999. Withholding and exchanging iron: Interactions between Erwinia spp. and their plant hosts. Annu Rev Phytopathol 37: 307–334. DOI: https://doi.org/10.1146/ annurev.phyto.37.1.307

FAO, 2018. Birleşmiş Milletler Gıda ve Tarım Örgütü. FAOSTAT. http://www.fao.org/faostat, Erişim tarihi 11.01.2018.

Flink J, Boman A, Boman H, Merrifield RB. 1989. Design, synthesis and antibacterial activity of cecropin like model peptides. International Journal of Peptide Protein Research 33: 412–421. DOI: https://doi.org/10.1111/j.1399-3011.1989. tb00217.x

Forsberg PJ. 1991. U.S. Patent Application No. 07/280,301. Galyov EE, Hakansson S, Wolf-Watz H. 1994. Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. Journal of Bacteriology 176: 4543–4548. DOI: 10.1128/jb.176.15.4543- 4548.1994

Gaudriaúlt S, Barny MA. 1999. Detection of Hrp-secreted proteins in strain CFBP1430 of Erwinia amylovora. Acta Hortic. 489: 345. DOI: 10.17660/ActaHortic.1999.489.60

Geider K. 2000. Exopolysaccharides of Erwinia amylovora: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan, In Vanneste J. L. (ed), Fire Blight: the disease and its causative agent, Erwinia amylovora, CABI, New York, 117-140.

Geier G, Geider K. 1993. Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiological and Molecular Plant Pathology, 42(6): 387-404. DOI: https://doi.org/ 10.1006/pmpp.1993.1029

Gianinazzi S, Ahl P, Cornu A, Scalla R, Cassini R. 1980. First report of host b-protein appearance in response to a fungal infection in tobacco. Physiological Plant Pathology, 16(3), 337- 342. DOI: https://doi.org/10.1016/S0048-4059(80)80005-1

Hanke V, Hiller I, Klotzsche G, Richter K, Norelli JL, Aldwinckle HS. 2000. Transformation in apple for increased disease resistance. Acta Horticulturae 538: 611–616. DOI: 10.17660/ActaHortic.2000.538.107

Hardt WD, Galan JE. 1997. A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria. Proceedings of the National Academy of Sciences of the United States of America 94: 9887–9892. DOI: https://doi.org/10.1073/pnas.94.18.9887

He SY, Bauer DW, Collmer A, Beer SV. 1994. Hypersensitive response elicited by Erwinia amylovora harpin requires active plant metabolism. Mol. Plant-Microbe Interact. 7: 289- 292.

Hildebrand M, Aldridge P, Geider K. 2006. Characterization of hns genes from Erwinia amylovora. Mol. Genetic Genomics 275: 310–319. DOI: 10.1007/s00438-005-0085-5

Holtappels M, Vrancken K, Noben JP, Remans T, Schoofs H, Deckers T, Valcke R. 2016. The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora. Journal of Proteomics 139: 1-12. DOI: https://doi.org/10.1016/j.jprot.2016.02.018

Hultmark D, Steiner H, Rasmuson T, Boman HG. 1980. Insect immunity. Purification and properties of three inductible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. European Journal of Biochemistry 106: 7– 16. DOI: https://doi.org/10.1111/j.1432-1033.1980.tb05991.x

Jin Q, Hu W, Brown I, McGhee G, Hart P, Jones AL, He SY. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type IIl secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129-1139. DOI: https://doi.org/10.1046/j.1365-2958.2001.02455.x

Joll`es P, Joll`es J. 1984. What’s new in lysozyme research? Areview. Molecular and Cellular Biochemistry 63: 165–189.

Kellerhals M, Spuhler M, Patocchi A, Frey J. 2009. Selection efficiency in apple breeding. Acta Hort 814: 177–183. DOI: 10.17660/ActaHortic.2009.814.22

Khan MA, Duffy B, Gessler C, Patocchi A. 2006. QTL mapping of fire blight resistance in apple. Mol Breed 17: 299–306. DOI: DOI 10.1007/s11032-006-9000-y

Khan MA, Durel CE, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A. 2007. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50: 568–577. DOI: https://doi.org/ 10.1139/G07-033

Kim JF, Beer SV. 2000. hrp Genes and Harpins of Erwinia amylovora: a Decade of Discovery, in: J.L. Vanneste. Fire Blight: the Disease and its Causative Agent, Erwinia amylovora, CABI Publishing, pp. 153. ISBN 0 85199 294 3.

Kim JF, Beer SV. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180:5203-5210. DOI: 10.1128/JB.180.19.5203-5210.1998

Kim JF, Wei ZM, Beer SV. 1997. The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. Journal of bacteriology, 179(5): 1690- 1697. DOI: 10.1128/jb.179.5.1690-1697.1997

Kim JF. 1997. Molecular characterization of a novel harpin and two hrp secretory operons of Erwinia amylovora, and a hrp operon of E. chrysanthemi. Ph.D. Cornell University, Ithaca, NY. DOI: 10.1128/jb.179.5.1690-1697.1997

Ko K, Brown S, Norelli JL, Aldwinckle HS. 1998. Alteration in nptII and gus expression following micropropagation of transgenic M.7 apple rootstock lines. Journal of the American Society of Horticultural Science 123: 11–18. DOI: https://doi.org/10.21273/JASHS.123.1.11

Ko K, Norelli JL, Reynoird JP, Aldwinckle HS, Brown SK. 2002. T4 lysozyme and attacin genes enhance resistance of transgenic galaxy apple against Erwinia amylovora. Journal of the American Society of Horticultural Science 127: 515– 519. DOI: https://doi.org/10.21273/JASHS.127.4.515

Ko K, Norelli JL, Reynoird JP, Boresjza-Wysocka EE, Brown S, Aldwinckle HS. 2000. Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnology Letter 22: 373–381.

Koczan JM, Lenneman BR, McGrath MJ, Sundin GW. 2011. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Appl. Environ. Microbiol. 77: 7031–7039. DOI: 10.1128/ AEM.05138-11

Koczan JM, McGrath MJ, Zhao Y, Sundin GW. 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: Implications in pathogenicity. Phytopathology, 99: 1237–1244. DOI: https://doi.org/10.1094/PHYTO-99-11-1237

Koebnik R, Locher K, P Van Gelder P. 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Moleculer Microbiology 37(2): 239-253. DOI: https://doi.org/10.1046/j.1365-2958.2000.01983.x

Langlotz C, Schollmeyer M, Coplin DL, Nimtz M, Geider K. 2011. Biosynthesis of the repeating units of the exopolysaccharides amylovoran from Erwinia amylovora and stewartan from Pantoea stewartii. Physiological and molecular plant pathology, 75(4), 163-169. DOI: https://doi.org/10.1016/j.pmpp.2011.04.001

Le Roux PM, Khan MA, Duffy B, Patocchi A, Broggini GAL, Gessler C. 2010. Quantitative trait loci mapping of fire blight resistance in the apple cultivars ‘Florina’ and ‘NovaEasygro’. Genome 53: 710–722. DOI: https://doi.org/10.1139/G10-047

Liu Q, Ingersoll J, Owens L, Salih S, Meng R, Hammerschlag F. 2001. Response of transgenic Royal Gala apple (Malus× domestica Borkh.) shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Reports, 20(4): 306- 312. DOI: 10.1007/s002990100333

Liu Q, Salih S, Hammerschlag F. 1998. Etiolation of ‘Royal Gala’ apple (Malus domestica Borkh.) shoots promotes high frequency shoot organogenesis and enhanced β- glucuronidase expression from stem internodes. Plant Cell Reports 18: 32–36.

Llop P, Barbe S, Lopez MM. 2012. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. Trees- Structure and Function 26: 31– 46. DOI: 10.1007/s00468- 011-0630-2

Llop P, Cabrefiga J, Smits THM, Dreo T, Barbe S, Pulawska J, Bultreys A, Blom J, Duffy B, Montesinos E, Lopez MM. 2011. Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen. PLoS ONE 6, e28651. DOI: https://doi.org/10.1371/journal.pone.0028651

Losada LC, Hutcheson SW. 2005. Type III secretion chaperones of Pseudomonas syringae protect effectors from Lonassociated degradation. Molecular microbiology, 55(3): 941- 953. DOI: https://doi.org/10.1111/j.1365-2958.2004.04438.x

Maes M, Orye K, Bobev S, Devreese B, van Beeumen J, de Bruyn A, Busson R, Herdewijn P, Morreel K, Messens E. 2001. Influence of amylovoran production on virulence of Erwinia amylovora and a different amylovoran structure in E. amylovora isolates from Rubus. Eur. J. Plant Pathol., 107: 839–844.

Tör M. 1998. Recent Developments In Molecular Plant-Microbe Interactions. Turkish Journal of Biology, 22(3): 271-286.

Malnoy M, Aldwinckle HS. 2009. Apple: c Translational Genomics (Gene function validated in models/models in crops, transgenics, RNAi, over-expression) in Folta K and Gardiner S.E. (eds.). “Genetics and Genomics of Rosaceae” Springer publishing, USA, pp 143-162.

Malnoy M, Borejsza-Wysocka E, Pascal-Omeñaca L, Beer SV. 2008. Silencing of HIPM, the apple protein that interacts with HrpN of Erwinia amylovora. Acta horticulturae 793(793): 261-264. DOI: 10.17660/ActaHortic.2008.793.38

Malnoy M, Borejsza-Wysocka EE, Jin QL, He SY, Aldwinckle HS. 2007b. Over-expression of the apple gene MpNPR1 causes increased disease resistance in Malus domestica. Acta Horticulturae (in press).

Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle H. S. 2007a. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica, Mol Plant Microbe Interact, 20: 1568–1580. DOI: 10.17660/ ActaHortic.2006.704.82

Mann RA, Blom J, Buhlmann A, Plummer KM, Beer SV, Luck JE, Goesmann A, Frey JE, Rodoni BC, Duffy B, Smits TH. M. 2012. Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element. Gene 504: 6-12. DOI: https://doi.org/10.1016/j.gene.2012.05.002

Mann RA, Smits TH, Bühlmann A, Blom J, Goesmann A, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B. 2013. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS ONE 8, e55644. DOI: https://doi.org/10.1371/ journal.pone.0055644

Meng XD, Bonasera JM, Kim J, Nissinen RM, Beer SV. 2006, Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol. Plant Microbe Interact, 19: 53-61. DOI: https://doi.org/ 10.1094/MPMI-19-0053

Milčevičová R, Gosch C, Halbwirth H, Stich K, Hanke MV, Peil A, Flachowsky H, Rozhon W, Jonak C, Oufir M. 2010. Erwinia amylovora induced defense mechanisms of two apple species that differ in susceptibility to fire blight, Plant Science, 179(1-2): 60-67. DOI: https://doi.org/10.1016/ j.plantsci.2010.04.013

Mills SD, Boland A, Sory MP, van der Smissen P, Kerbourch C, Finlay BB, Cornelis GR. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proceedings of the National Academy of Sciences of the United States of America 94: 12638–12643. DOI: https://doi.org/10.1073/pnas.94.23.12638

Mohammadi M. 2010. Enhanced colonization and pathogenicity of Erwinia amylovora strains transformed with the near-ubiquitous pEA29 plasmid on pear and apple. Plant Pathol 59: 252–261. DOI: https://doi.org/10.1111/j.1365-3059.2009. 02182.x

Mourgues F, Brisset MN, Chevreau E. 1998. Activity of different antibacterial peptides on Erwinia amylovora growth, and evaluation of the phytotoxicity and stability of cecropins. Plant Science 139: 83–91. DOI: https://doi.org/ 10.1016/S0168-9452(98)00178-2

Norelli JL, Aldwinckle H, Destefano-Beltran L, Jaynes JM. 1994. Transgenic Malling 26 apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77: 123–8.

Norelli JL, Bolar JP, Harman GE, Aldwinckle HS. 1999. Transgenic apple plants expressing chitinases from Trichoderma have increased resistance to scab (Venturia inaequalis). Abstract, Eucarpia Symp. on fruit breeding & genetics, Dresden, Sept. 1999. DOI: 10.17660/ ActaHortic.2000.538.108

Norelli JL, Farrell RE, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME. 2009. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis, Tree Genet. Genomes 5, 27-40. DOI: 10.1007/s11295-008-0164-y

Norelli JL, Jones AL, Aldwinckle HS. 2003. Fire blight management in the twenty-first century. Plant Dis 87: 756– 765.

Oh CS, Beer SV, 2007. AtHIPM, an ortholog of the apple HrpNinteracting protein, is a negative regulator of plant growth and mediates the growthenhancing effect of HrpN in Arabidopsis, Plant Physiol, 145: 426-436. DOI: DOI: https://doi.org/ 10.1104/pp.107.103432

Oh CS, Kim JF, Beer SV. 2005. The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol. Plant Pathol. 6: 125- 138. DOI: https://doi.org/10.1111/j.1364-3703.2005.00269.x

Ordax M, Marco-Noales E, Lopez MM, Biosca EG. 2010. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res. Microbiol. 161: 549–555. DOI: https://doi.org/10.1016/ j.resmic.2010.05.003

Parravicini G, Gessler C, Denance C, Lasserre-Zuber P, Vergne E, Brisset MN, Patocchi A, Durel CE, Broggini GAL. 2011. Identification of serine/threonine kinase and nucleotidebinding site–leucine-rich repeat (NBS–LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol. doi: 10.1111/J.1364- 3703.2010.00690.X.

Peil A, Richter K, Garcia-Libreros T, Hanke V, Flachowsky H, Celton JM, Horner M, Gardiner S, Bus V. 2008. Confirmation of the fire blight QTL of Malus × robusta 5 on linkage group 3. Acta Hort 793: 297–303. DOI: 10.17660/ ActaHortic.2008.793.44

Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol., 7: 602–609. DOI: https://doi.org/10.1016/ j.mib.2004.10.014

Singh DK, Maximova SN, Jensen PJ, Lehman BL, Ngugi HK, McNellis TW. 2010. FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiology, 154(3): 1281-1293. DOI: DOI: https://doi.org/10.1104/pp.110.164095

Smits TH, Duffy B. 2011. Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Archives of microbiology, 193(10): 693. DOI 10.1007/ s00203-011-0739-0

Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B. 2010. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23: 384–393. DOP: https://doi.org/10.1094/MPMI-23-4- 0384

Song X, Fan H, Wei ZM, 2002. Receptors for hypersensitive response elicitors and uses thereof, U.S. Patent Application No. 20020007501.

Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE. 2001. Common and contrasting themes of plant and animal diseases. Science 292: 2285–2289. DOI: 10.1126/ science.1062013

Steinhauer J, Agha R, Pham T, Varga AW, Goldberg MB. 1999. The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol Microbiol., 32: 367-377. DOI: https://doi.org/10.1046/j.1365-2958.1999.01356.x

Van Loon LC, 1999. Occurrence and properties of plant pathogenesis-related proteins. In: Pathogenesis-related proteins in plants. Eds. S.K. Datta, S. Muthukrishnan, CRC Press LLC, Boca Raton, 1-19.

Van Loon LC, Rep M, Pieterse CMJ, 2006. Significance of inducible defense-related proteins in infected plants, Annu Rev Phytopathol, 44: 135-162. DOI: https://doi.org/ 10.1146/annurev.phyto.44.070505.143425

Van Schie CC, Takken FL. 2014. Susceptibility genes 101: how to be a good host. Annual review of phytopathology, 52: 551- 581. DOI: https://doi.org/10.1146/annurev-phyto-102313- 045854

Venisse JS, Malnoy M, Faize M, Paulin JP, Brisset MN, 2002. Modulation of defence responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora, Mol. Plant Microbe Interact, 15: 1204-1212. DOI: https://doi.org/10.1094/MPMI.2002.15.12.1204

Vrancken K, Holtappels M, Schoofs H, Deckers T, Valcke R. 2013. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiology, 159: 823–832. DOI: https://doi.org/10.1099/ mic.0.064881-0

Wang D, Korban SS, Zhao YF, 2009. The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora, Mol. Plant Pathol., 10: 277-290. DOI: https://doi.org/ 10.1111/j.1364-3703.2008.00531.x

Wei ZM, Beer SV, 1996. Harpin from Erwinia amylovora induces plant resistance. Acta Hortic. 411: 223-225. DOI: 10.17660/ActaHortic.1996.411.45

Wei ZM, Beer SV. 1993. Harpin of Erwinia amylovora funetions in secretions of harpin and is a member of a new protein family. J. Bacteriol. 175: 7958-7967. DOI: 10.1128/ jb.175.24.7958-7967.1993

Wei ZM, Beer SV. 1995. hrpl activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177: 6201-6210. DOI: 10.1128/ jb.177.21.6201-6210.1995

Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV. 1992a. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. DOI: 10.1126/science.1621099

Wei ZM, Sneath BJ, Beer SV. 1992b. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J. Bacteriol. 174: 1875-1882. DOI: 10.1128/jb.174.6.1875- 1882.1992

Zhao Y, He SY, Sundin GW. 2006. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Molecular plantmicrobe interactions, 19(6): 644-654. DOI: https://doi.org/ 10.1094/MPMI-19-0644

Zhao YF, Blumer SE, Sundin GW. 2005. Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187: 8088–8103. DOI: 10.1128/JB.187.23.8088-8103.2005

Zhao YF, Sundin GW, Wang DP. 2009. Construction and analysis of pathogenicity island deletion mutants in Erwinia amylovora. Can J Microbiol 55: 457–464. DOI: https://doi.org/ 10.1139/W08-147