Uzun Süreli Korumalı ve Geleneksel Toprak İşleme Sistemlerinin Beta Glikosidaz Enzim Aktivitesi ve Potansiyel Mineralize Olabilir Azot Üzerine Etkisi

Bu çalışmada, dokuz yıl süre ile uygulanan iki geleneksel, üç azaltılmış ve sıfır toprak işleme yöntemlerinin GEA ve PMN üzerine etkileri belirlenmiş ve karşılaştırılmıştır. Tesadüf blokları şeklinde 2006 yılında başlatılan çalışmada, 6 farklı toprak işleme sistemi için 3 tekerrürlü ve toplam 18 adet parsel yer almaktadır. Bunlara ilaveten, Araştırma alanında, anızlı geleneksel toprak işleme (Gİ–1), anızları yakılmış geleneksel toprak işleme (Gİ–2), ağır diskli tırmıklı azaltılmış toprak işleme (ATİ–1), rototillerli azaltılmış toprak işleme (ATİ–2), ağır diskli tırmıklı azaltılmış sıfır toprak işleme (ASTİ) ve doğrudan ekimli sıfır toprak işleme (STİ) şeklinde altı farklı toprak işleme yöntemi uygulanmaktadır. Ürün rotasyonu olarak bugüne kadar kışlık bitki olarak her yıl buğday ve yazlık olarak (ikinci ürün) buğday hasadını takiben sırasıyla bir yıl mısır ve bir yıl soya yetiştirilmiştir. Toprak işleme sistemlerinin farklılaşması GEA ve PMN konsantrasyonunun önemli düzeyde farklılaşmasına neden olmuştur. Toprak işleme yoğunluğunun azalması ile birlikte önemli düzeyde artışgösteren GEA konsantrasyonu 44,68 mg PNP kg-1sa-1(Gİ-2) ile 207,66mg PNP kg-1sa-1(STİ) arasında değişmiştir. Ancak GEA’da belirlenen trend PMN’de tespit edilememiştir. Sıfır toprak işleme altındaki topraklarda PMN konsantrasyonu önemli düzeyde yüksek olmakla birlikte ATİ-1 ile PMN konsantrasyonu bakımından aynı grupta yer almıştır. İşlenmemiş topraklarda PMN konsantrasyonunun daha yüksek olmasının muhtemelen toprak strüktürünün parçalanmaması ile ilişkili olduğu düşünülmektedir. Araştırma sonuçları, azaltılmış ve sıfır toprak işleme sistemlerinin bölgede toprağın kalitesinin arttırılması adına son derece gerekli olduğunu ortaya koymaktadır.

Effects of Long Term Conservative and Conventional Tillage Systems on Beta Glucosidase Enzyme Activity and Potential Mineralizable Nitrogen

In this study, the effects of two traditional, three reduced and a zero tillage methods applied for nine years on GEA and PMN were determined and compared. The study, initiated in 2006 as randomized block design, includes a total of 18 plots with 3 replications for 6 different soil tillage systems. In the study, six different soil tillage methods are applied, namely conventional tillage with stubbles (CT-1), conventional tillage with stubbles burned (CT-2), reduced tillage with heavy disc harrow (RT-1), reduced tillage with rototiller (RT-2), reduced tillage with heavy disc harrow (RT-3) and no tillage (NT). Winter wheat was grown as the main crop every year or corn and soybean was grown following the harvest of wheat (second crop) every other year. Differentiation of tillage systems led to a significant variation in GEA and PMN concentrations. The GEA concentration, which increased significantly with the decrease in tillage density, varied between 44.68 mg PNP kg-1h-1(CT-2) and 207.66 mg PNP kg-1h-1(STI). However, the trend determined in GEA could not be detected in PMN. Although PMN concentration was significantly higher in soils under NT, it was included in the same statistical group with RT-1 for PMN concentrations. Higher PMN concentration in notill soils can be possibly related to the non-disturbance of soil structure. The results of study revealed that reduced and no tillage systems are extremely necessary to increase the quality of soils in the region.

___

Alhameid A, Singh J, Sekaran U, Kumar S, Singh S. 2019. Soil Biological Health: Influence of Crop Rotational Diversity and Tillage on Soil Microbial Properties. Soil Science Society of America Journal, 83(5): 1431-1442. https://doi.org/10.2136/ sssaj2018.03.0125

Ashworth AJ, DeBruyn JM, Allen FM, Radosevich M, Owens PR. 2017. Microbial community structure is affected by cropping sequences and poultry litter under long-term notillage. Soil Biol. Biochem. 114: 210-219. https://doi.org/10.1016/j.soilbio.2017.07.019

Aziz I, Mahmood T, Islam KR. 2013. Effect of long term no-till and conventional tillage practices on soil quality, Soil and Tillage Research, 131: 28-35. https://doi.org/10.1016/j.still. 2013.03.002

Bandick A, Dick RP. 1999. Field management eff ects on soil enzyme activities. Soil Biol. Biochem. 31: 1471–1479. https://doi.org/10.1016/S0038-0717(99)00051-6

Blevins RL, Lal R, Doran JW, Langdale GW, Frye WW. 2018. Conservation tillage for erosion control and soil quality, In Advances in soil and water conservation, pp. 51-68.

Calderon FJ, Nielsen D, Acosta-Martinez V, Vigil MF, Lyon D. 2016. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the Central Great Plains of North America. Pedosphere 26: 192- 205. https://doi.org/10.1016/S1002-0160(15)60034-0

Campbell CA, Janzen HH, Juma NG. 1997. Case studies of soil quality in the Canadian Prairies: long term field experiments. In: Gregorich, E.G., MR (Eds.), Soil Quality for Crop Production. Elsevier, Amsterdam, The Netherlands, pp. 351– 397. https://doi.org/10.1016/S0166-2481(97)80044-X

Çelik İ, Ortaş İ, Bereket Barut Z, Gök M, Sarıyev A, Demirbaş A, Akpınar Ç, Tülün Y. 2009. Farklı Toprak İşleme Sistemlerinin Toprak Kalitesi Parametrelerine ve Ürün Verimine Etkileri, TÜBİTAK-TOVAK, Araştırma projesi sonuç raporu, Proje No: 106O023.

Çelik İ, Günal H, Barut ZB, Acir N, Karlen DL. 2019. Çukurova Koşullarında Sürdürülebilir Toprak İşleme Yöntemlerinin Uzun Süreli Denemelerde Toprak Kalitesi Değerlendirmelerinin Kullanımı ile Belirlenmesi. TUBITAK TOVAG 115O353. Sonuç Raporu. s. 353.

Doran JW, Parkin TB. 1994. Defining and assessing soil quality, In: Doran, J.W., Coleman, D.C., Bezdicek, D.F., and Stewart, B.A., (Eds.). Defining soil quality for a sustainable environment. Madison, WI: SSSA; pp.1–20. https://doi.org/ 10.2136/sssaspecpub35.c1

Doran JW, Linn DM. 2018. Microbial Ecology of Conservation Management Systems, In Soil Biology: Effects on Soil Quality, pp. 1-28.

Drinkwater LE, Cambardella CA, Reeder JD, Rice CW. 1997. Potentially mineralizable nitrogen as an indicator of biologically active soil nitrogen. Methods for assessing soil quality. 49: 217- 229. https://doi.org/10.2136/sssaspecpub49.c13

Franzluebbers AJ. 2016. Should Soil Testing Services Measure Soil Biological Activity?, Agricultural and Environmental Letters, 1(1). https://doi.org/10.2134/ael2015.11.0009

Gajda AM, Przewłoka B, Gawryjołek K. 2013. Changes in soil quality associated with tillage system applied. International Agrophysics, 27(2): 133-141. https://doi.org/10.2478/v10247 -012-0078-7

Gardner JB, Drinkwater LE. 2009. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments, Ecological Applications, 19(8): 2167-2184. https://doi.org/ 10.1890/08-1122.1

Green, V.S., D.E. Stott, J.C. Cruz, and N. Curi. 2007. Tillage impacts on soil biological activity and aggregation in a Brazilian Cerrado Oxisol. Soil Tillage Res. 92: 114–121. https://doi.org/10.1016/j.still.2006.01.004

IUSS Working Group. 2015. WRB World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015. World Soil Resources Report No. 106 FAO, Rome.

Karlen DL, Cambardella CA, Kovar JL, Colvin TS. 2013. Soil quality response to long-term tillage and crop rotation practices, Soil and Tillage Research, 133: 54-64. https://doi.org/10.1016/j.still.2013.05.013

Karlen DL, Stott DE, Cambardella CA, Kremer RJ, King KW, McCarty GW. 2014. Surface soil quality in five Midwestern cropland conservation effects assessment project watersheds, Journal of Soil and Water Conservation, 69(5): 393-401. https://doi.org/10.2489/jswc.69.5.393

Knight TR, Dick RP. 2004. Differentiating microbial and stabilized b-glucosidase activity relative to soil quality, Soil Biology and Biochemistry, 36: 2089–2096. https://doi.org/ 10.1016/j.soilbio.2004.06.007

Li L, Xi Y, Chen E, He L, Wang L, Xiao X, Tian W. 2018. Effects of tillage and green manure crop on composition and diversity of soil microbial community. Journal of Ecology and Rural Environment, 34(4): 342-348. http://www.ere.ac.cn/.../ column79.shtml

Luo Y, Iqbal A, He L, Zhao Q, Wei S, Ali I, Ullah S, Yan B, Jiang L. 2020. Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China. Agronomy, 10(9): 1233. https://doi.org/10.3390/agronomy10091233

Mahal NK, Castellano MJ, Miguez FE. 2018. Conservation Agriculture Practices Increase Potentially Mineralizable Nitrogen: A Meta-Analysis, Soil Science Society of America Journal, 82(5): 1270-1278. https://doi.org/10.2136/ sssaj 2017.07.0245

Manetti PL, Faberi AJ, Clemente NL, Lopez AN. 2013. Macrofauna activity density in contrasting tillage systems in buenos aires province, Argentina, Agronomy Journal, 105: 1780-1786. https://doi.org/10.2134/agronj2013.0129

Martín-Lammerding D, Navas M, Albarrána MDM, Tenorioa JL, Waltera I. 2015. Long term management systems under semiarid conditions: Influence on labile organic matter, bglucosidase activity and microbial efficiency, Applied Soil Ecology, 96: 296-305. https://doi.org/10.1016/j.apsoil. 2015.08.021

Maurya B, Singh V, Dhyani P, Kumar A. 2012. Influence of altitudes on activity of soil health bioindicators β-glucosidase and urease in agricultural soils of Almora district of central Himalaya, Research Journal of Soil Biology, 4: 1–9 https://doi.org/10.3923/rjsb.2012.1.9

Rice CW, Smith MS. 1984. Short-term immobilization of fertilizer nitrogen at the surface of no-till and plowed soils, Soil Science Society of America Journal, 48: 295-297. https://doi.org/10.2136/sssaj1984.03615995004800020013x

Roldán, A, Salinas-García, JR, Alguacil MM, Díaz E, Caravaca F. 2005. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma, 129(3-4), 178-185.

Saikia R, Sharma S, Thind HS, Singh Y. 2020. Tillage and residue management practices affect soil biological indicators in a rice–wheat cropping system in north‐western India. Soil Use and Management, 36(1): 157-172. https://doi.org/10.1111/ sum.12544

Saviozzi AL, Levi-Minzi R, Cardelli RO, Riffaldi R. 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and soil. 233(2): 251-9. https://doi.org/10.1023/A:1010526209076

Schimel J, Balser TC, Wallenstein M. 2007. Microbial stressresponse physiology and its implications for ecosystem function, Ecology, 88(6): 1386-1394. https://doi.org/10.1890/ 06-0219

Sharifi M, Zebarth BJ, Burton DL, Grant CA, Cooper JM. 2007. Evaluation of some indices of potentially mineralizable nitrogen in soil, Soil Science Society of America Journal, 71: 1233–1239. https://doi.org/10.2136/sssaj2006.0265

Simard RR, N’Dayegamiye A. 1993. Nitrogen-mineralization potential of meadow soils, Canadian Journal of Soil Science, 73: 27–38. https://doi.org/10.4141/cjss93-003

Soil Taxonomy. 2014. Keys to Soil Taxonomy. 12th ed. USDANatural Resources Conservation Service, Washington, DC

Stege PW, Messina GA, Bianchi G, Olsina RA, Raba J. 2010. Determination of β-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes, Analytical and Bioanalytical Chemistry, 397, 1347–1353. https://doi.org/10.1007/s00216-010-3634-7

Stott DE, Andrews SS, Liebig MA, Wienhold BJ, Karlen DL. 2010. Evaluation of βglucosidase activity as a soil quality indicator for the soil management assessment framework (SMAF). Soil Sci. Soc. Am. J. 74: 107–119. https://doi.org/ 10.2136/sssaj2009.0029

Sundermeier AP, Islam KR, Raut Y, Reeder RC, Dick WA. 2011. Continuous no-till impacts on soil biophysical carbon sequestration, Soil Science Society of America Journal, 75: 1779-1788. https://doi.org/10.2136/sssaj2010.0334

Tabatabai M. 1994. Soil enzymes. Methods of soil analysis: part 2—microbiological and biochemical properties. (methodsofsoilan2):775-833

Walley F, Yates T, Van Groenigen JW, Van Kessel C. 2002. Relationships between soil nitrogen availability indices, yield, and nitrogen accumulation of wheat, Soil Science Society of America Journal, 66: 1549–1561. https://doi.org/ 10.2136/sssaj2002.1549

Willson TC, Paul EA, Harwood RR. 2001. Biologically active soil organic matter fractions in sustainable cropping systems, Applied Soil Ecology, 16: 63–76. https://doi.org/10.1016/ S0929-1393(00)00077-9

van Es HM, Karlen DL. 2019. Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields. Soil Sci. Soc. Am. J. 83: 721–732. https://doi.org/ 10.2136/sssaj2018.09.0338