Tarımda Verim Artışı ve Tasarrufun Yolu: Akıllı Sulama ve Gübreleme
Toplam uygulanan azotlu gübrelerin yaklaşık olarak sadece %50'si bitkiler tarafından alınabilmektedir. Dinamik fertigasyon uygulamalarının gübre kullanım etkinliğinde önemli artış sağladığı görülmüştür. Dinamik fertigasyon yaklaşımında su ve bitki besin elementleri bitki kuru madde üretimi ve kök hacmine göre günlük hesap edilerek belirlenmektedir. Akıllı tarım üretimin her aşamasında değişimleri ölçme ve gözlemleme üzerine kurulu bilgi temelli karar verme yaklaşımıdır. Bu sistemde bitkinin günlük su ve gübre ihtiyaçları karşılandığı için aşırı sulama ve gübrelemenin önüne geçilerek girdi kullanımında tasarruf sağlanmakta, bitki stres şartlarına maruz kalmadığı için verim artışları elde edilmektedir. Sulama ile bitkisel üretimi 5 kat artırmak mümkündür, ancak su kaynaklarının azalması ve hızlı büyüme nedeniyle kalitesinin bozulması tatlı su kaynaklarının en büyük kullanıcısı olan tarımda su kullanımını kısıtlama yoluna gidilmesini zorunlu kılmaktadır. Su tasarrufu sağlayan sulama teknikleri ile akıllı sulama ve gübreleme yönetim uygulamalarıyla su ve gübre kullanım etkinliğinin artırılması böylece çevre üzerine olan olumsuz etkilerin en aza indirilmesinde ve artan nüfusun gıda ihtiyacının karşılanmasında kaçınılmaz olan verim artışlarını yakalamada vazgeçilmez stratejilerdendir. Çalışmada akıllı sulama ve gübreleme ile ilgili yapılmış araştırmalar ve uygulamalara geniş kapsamda yer verilmeye çalışılarak tarımda daha az su ve gübre kullanımı ile daha yüksek verim elde etmeye yönelik ışık tutulmaya çalışılmıştır.
The Way of Yield Increasing and Cost Reducing in Agriculture: Smart Irrigation and Fertigation
The plants can only use the around 50% of the applied nitrogenous fertilizer. It has beenobserved that the dynamic fertigation applications help to improve the fertilizereffectiveness. In the dynamic fertigation approach, water and plant nutritional elementsare calculated and determined according to the plant dry matter generation rate and rootvolume. Smart agriculture is an knowledge based decision making approach establishedupon quantification and observations of the changes in each level of production. With thissystem, saving can be provided by only supplying the plant’s daily need of water andfertilizer and preventing the excess irrigation and fertilizing, so yield increase can beachieved by keeping away the plants from the stress conditions. Agricultural productioncan be increased five times by irrigation but shortening in water sources and decrease inquality reasoned by fast growing are restricted of irrigation which is the main user offreshwater sources. Increasing the water and fertilizer effectiveness with the smartirrigation techniques which can save water and fertilization management applications arethe essential strategies to be able to reach the yield increase in order to supply thegrowing food needs of developing population and help to minimize the environmentaldamage. In the study, the researches and applications related to smart irrigation andfertilization were tried to be included in a wide scope and tried to keep a light to obtainhigher yield with less water and fertilizer use in agriculture.
___
- Adeyemi, O, Grove, I, Peets, S, Norton, T. 2017. Advanced
monitoring and management systems for improving
sustainability in precision irrigation. Sustainability, 9: 1-29.
- Aras İ. 2006. Damla sulama. J Field Crops CRI., 15: 49–60.
Bansod SJ, Thakare SS. 2014. Near Infrared spectroscopy based
a portable soil nitrogen detector design. Int. J. Comput. Sci.
Inf. Technol, 5: 3953–3956.
- Bin Mohd Juaser.2014. Smart fertigation system for plants. A
thesis submitted in fulfilment of the requirements for the
award of the degree of Bachelor of Engineering Faculty of
Electrical Engineering Universiti Teknologi Malaysia.
- Blanco M. 2011. Supply of and access to key nutrients NPK for
fertilizers for feeding the world in 2050. Agronomies
Etsiaupm. We Engineer Life Food and Environment.
- Blonquist JM, Norman JM, Bugbee B. 2009. Automated
measurement of canopy stomatal conductance based on
infrared temperature. Agric. For. Meteorol, 149: 2183–2197.
- Bogena HR, Huisman JA, Oberdörster C, Vereecken H. 2004.
Evaluation of a low-cost soil water content sensor for
wireless network applications. J. Hydrol, 344: 32–42.
- Brentrup F, Palliere B. 2011.Nitrogen use efficiency as an agroenvironmental
indicator. Yara International Research
Centre.
- Çetin Ö. 2015. Fertigasyon: Sulama ile birlikte gübreleme. Dicle
Ü. Ziraat Fak. Tarımsal Yapılar ve Sulama Bölümü,
Diyarbakır.
- Ekici E, Alişarlı M, Sancak YC. 2008. Peynir çeşitlerinde nitrit
ve nitrozaminler, YYÜ Veteriner Fakültesi Dergisi, 2: 71-72.
- Erdem Y, Arin L, Erdem T, Polat S, Deveci M, Okursoy H,
Gültas HT. 2010. Crop water stress index for assessing
irrigation scheduling of drip irrigated broccoli (Brassica
oleracea L. var. italica). Agric Water Manag., 98: 148–156.
- FAO. 2016. Current world fertilizer trends and outlook to 2018.
Rome, Italy, pp: 66.
- Fox RH, Walthall CL. 2008. Crop monitoring technologies to
assess nitrogen status. In Nitrogen in Agricultural Systems;
American Society of Agronomy: Madison, WI, USA, pp:
647–674.
- French R, Bowling R, Abbott A, Stewart M. 2014. High Yield
Irrigated Corn: Implementing Research and Adapting for
Profitable Production. Great Plains Soil Fertility
Conference, Denver, CO. 15: 78-83.
- Geesing D, Bachmaier M, Schmidhalter U. 2004. Field
calibration of a capacitance soil water probe in
heterogeneous fields. Aust. J. Soil Res., 42: 289–299.
- Giller KE, Chalk P, Dobermann A, Hammond L, Heffer P,
Ladha JK, Nyamudeza P, Maene L, Ssali H, Freney J. 2004.
Emerging technologies to increase the efficiency of use of
fertilizer nitrogen. In Agriculture and the Nitrogen Cycle;
Mosier A, Syers JK, Freney JR, Eds.; Island Press: New
York, NY, USA, p: 344.
- Goulas Y, Cerovic ZG, Cartelat A, Moya I. 2004. Dualex: A
new instrument for field measurements of epidermal
ultraviolet absorbance by chlorophyll fluorescence. Appl.
Opt., 43: 4488–4496.
- Granados MR, Thompson RB, Fernandez MD, Martinez-Gaitan
C, Gallardo M. 2013. Prescriptive-corrective nitrogen and
irrigation management of fertigated and drip-irrigated
vegetable crops using modelling and monitoring approaches.
Agric. Water Manag., 119: 121–134.
- Gupta ML, Khosla R. 2014. Precision nitrogen management and
global nitrogen use efficiency.
https://www.ispag.org/.../abstract_1013.docx (Accessed
April, 2017).
- Hunsaker DJ, Pinter PJ, Barnes EM, Kimball BA. 2003.
Estimating cotton evapotranspiration crop coefficients with
a multispectral vegetation index. Irrig. Sci., 22: 95–104.
- Incrocci L, Massa D, Pardossi A. 2017. New trends in the
fertigation management of irrigated vegetable crops.
Horticulture, 3 (37): 1-20.
- Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor
WD, Hunt LA, Wilkens PW, Singh U, Gallardo M,
Thompson RB, Gimenez C, Padilla FM, Stöckle CO. 2014.
Prototype decision support system based on the VegSyst
simulation model to calculate crop N and water
requirements for tomato under plastic cover. Irrig. Sci., 32:
237–253.
- Karaşahin M. 2014a. Bitkisel üretimde azot alım etkinliği ve
reaktif azotun çevre üzerine olumsuz etkileri. APJES., II-III:
15-21.
- Karaşahin M. 2014b. Effects of different irrigation methods and
plant density on silage yield and yield components of PR
31Y43 hybrid corn cultivar. Turk J Agric For., 38: 159-168.
- Karlberg L, Ben-Gal A, Jansson PE, Shani U. 2006. Modelling
transpiration and growth in salinity-stressed tomato under
different climatic conditions. Ecol Model., 190: 15–40.
- Louison L, Omrane A, Ozier-Lafontaine H, Picart D. 2015.
Modeling plant nutrient uptake: Mathematical analysis and
optimal control. Lect Notes Pure Appl., 4: 193–203.
- Lozoya C, Mendoza C, Mejia L, Quintana J, Mendoza G,
Bustillos M, Arras O, Solis L. 2014. Model predictive
control for closed-loop irrigation. IFAC Proc. Vol. (IFACPapers
Online), 19: 4429–4434.
- Liu H, Yang H, Zheng J, Jia D, Wang J, Li, Y. Huang, G. 2012.
Irrigation scheduling strategies based onsoil matric potential
on yield and fruit quality of mulched-drip irrigated chili
pepper in Northwest China. Agric. Water Manag., 115: 232–
241.
- McCarthy AC, Hancock NH, Raine SR. 2010. VARI wise: A
general-purpose adaptive control simulation framework for
spatially and temporally varied irrigation at sub-field scale.
Comput. Electron. Agric., 70: 117–128.
- Meron M, Tsipris J, Orlov V, Alchanatis V, Cohen Y. 2010.
Crop water stress mapping for site-specific irrigation by
thermal imagery and artificial reference surfaces. Precis
Agric., 11: 148–162.
- Mulla DJ. 2013. Twenty five years of remote sensing in
precision agriculture: Key advances and remaining
knowledge gaps. Biosyst. Eng., 114: 358–371.
- Munoz-Carpena R, Shukla S, Morgan K. 2004. Field devices for
monitoring soil water content. Education, and Extension
Service, U.S. Department of Agriculture, 1-22.
- Munoz-Huerta RF, Guevara-Gonzalez RG, Contreras-Medina
LM, Torres-Pacheco I, Prado-Olivarez J, Ocampo-
Velazquez RV. 2013. A review of methods for sensing the
nitrogen status in plants: Advantages, disadvantages and
recent advances. Sensors, 13: 10823–10843.
- Nishina H. 2015. Development of speaking plant approach
technique for intelligent greenhouse. Agric Sci Proc., 3: 9–
13.
- Pereira LS, Allen RG, Smith M, Raes D. 2014. Crop
evapotranspiration estimation with FAO56: Past and future.
Agric Water Manag., 147: 4–20.
- Phillips AJ, Newlands NK, Liang SHL, Ellert BH. 2014.
Integrated sensing of soil moisture at the field-scale:
Measuring, modelling and sharing for improved agricultural
decision support. Comput Electron Agric., 107: 73–88.
- Pierce FJ. 2010. Precision Irrigation. Land bauforsch SH., 340:
45–56.
- Prakashgoud P, Desai BL. 2013. Intelligent Irrigation Control
System by Employing Wireless Sensor Networks Patil. Int J
Comput Appl., 79: 33–40.
- Rajakumar D, Ramah K, Rathika S, Thiyagarajan G. 2008.
Automation in micro-irrigation. Science Tech Entrepreneur.,
1-8.
- Rani PMN, Rajesh T, Saravanan R. 2011. Expert Systems in
Agriculture: A Review. Int J Sci Technol Eng., 3: 59–71.
- Rowlandson TL, Berg AA, Bullock PR, Ojo ER, McNairn H,
Wiseman G., Cosh MH. 2013. Evaluation of several
calibration procedures for a portable soil moisture sensor. J
Hydrol., 498: 335–344.
- Shah NG, Das I. 2012. Precision Irrigation: Sensor Network
Based Irrigation. In Problems, Perspectives and Challenges
of Agricultural Water Management; InTech: Rijeka,
Croatia., 217–232.
- Shaughnessy SAO, Evett SR, Colaizzi PD. 2014. Infrared
Thermometry as a Tool for Site-Specific Irrigation
- Scheduling. In Proceedings of the 26th Annual Central
Plains Irrigation Conference, Burlington, CO, USA,25–26
February 2014; pp: 136–145.
- Singh SK, Dutta S, Dharaiya N. 2013. Estimation of Crop
Evapotranspiration of Cotton using Remote Sensing
Technique. Int . Environ Eng Manag., 4: 523–528.
- Smith RJ, Baillie JN, Futures I. 2009. Defining precision
irrigation: A new approach to irrigation management. In
Proceedings of the Irrigation and Drainage Conference
2009, Swan Hill, Australia, October 2009; pp. 18–21.
- Steele DD, Stegman EC, Gregor BL. 1994. Field Comparison of
Irrigation Scheduling Methods for Corn. Trans. Asae, 37:
1197–1203.
- Vellidis G, Tucker M, Perry C, Kvien C, Bednarz C. 2008. A
real-time wireless smart sensor array for scheduling
irrigation. Comput Electron Agric., 61: 44–50.
- Zarco-Tejada PJ. 2014. Precision Agriculture: An Opportunity
For Eu Farmers Potential Support With The Cap 2014-
2020.Joint Research Centre (JRC) of the European
Commission, Monitoring Agriculture Resources.
- Zotarelli L, Scholberg JM, Dukes MD, Muñoz-Carpena R. 2008.
Fertilizer Residence Time Affects Nitrogen Uptake
Efficiency and Growth of Sweet Cor, J Environ Qual., 37:
1271–1278.