Kek ve Pilice İnoküle Edilen Salmonella Enteritidis’in Termal İnaktivasyonu
Bu çalışmada kek hamuruna ve çiğ bütün pilice inoküle edilen Salmonella Enteritidis’in konvektif tip fırında termal inaktivasyonu araştırılmıştır. Kek hamurunun tamamına ortalama 6,15 log-kob/g S. Enteritidis inoküle edilip 160°C’de alt-üst fan pişirme modunda 30 dakika ısıl işlem uygulanmıştır. Kekin soğuk noktası olan geometrik merkezden alınan örneklerde ısıl işlemin 5, 7 ve 10 dakikasında sırasıyla 1,49 log-kob/g, 2,06 log-kob/g, 4,29 log-kob/g S. Enteritidis azalışı sağlanmıştır. On beş dakika uygulanan ısıl işlem sonunda kek merkez sıcaklığı 85,69°C’ye ulaşmış olup S. Enteritidis tespit edilmemesine rağmen kek örneği pişmemiş olup duyusal özellikleri kabul edilebilir durumda değildir. Güvenli ve duyusal özellikleri tüketici tarafından kabul edilebilir olan kek 30 dakika süren ısıl işlemle elde edilmiştir. Bütün pilicin soğuk noktası olan göğüs orta bölgesine ısıl işlem öncesinde ortalama 7,29 log-kob/g S. Enteritidis inoküle edilip 220°C’de alt-üst fan modunda 60 dakika ısıl işlem uygulanmıştır. Otuz beş ve 45 dakika ısıl işlem uygulanan pilicin soğuk noktasında sıcaklık sırasıyla 59,33 ve 74,08°C’ye ulaşmış olup sırasıyla 1,93 log-kob/g ve 5,33 log-kob/g S. Enteritidis azalışı sağlanmıştır. 220°C’de 60 dakika ısıl işlem uygulanan bütün piliçte S. Enteritidis tespit edilmemiştir. 160°C’de alt-üst fan pişirme modunda 30 dakika ısıl işlem uygulanan kekler 4°C ve 25°C’de olmak üzere iki farklı depolama sıcaklığında 72 saat depolanmıştır. 220°C’de alt-üst fan pişirme modunda 60 dakika ısıl işlem uygulanan bütün piliç ise 4°C’de 72 saat depolanmıştır. Depolama sonrasında kek ve bütün piliç örneklerinde S. Enteritidis tespit edilmemiştir.
Thermal Inactivation of Salmonella Enteritidis Inoculated to Cake and Chicken
In this study, thermal inactivation of Salmonella Enteritidis inoculated to the cake dough and a whole raw chicken was investigated. The cake dough was inoculated with 6.15 logcfu/ g S. Enteritidis then, thermal treatment was applied at 160°C top-bottom fan cooking mode. The initial count of S. Enteritidis showed reductions 1.49 log-cfu/g, 2.06 log-cfu/g and 4.29 log-cfu/g in the samples from the cold point location from the geometric center of the cake at 5, 7 and 10 minutes of thermal treatment, respectively. Although S. Enteritidis is not detected at the end of 15 minutes of heat treatment, the center of the cake temperature has reached 85.69°C and the cake sample is uncooked and its sensory properties are not acceptable. The cake that is safe and favorable with the sensory properties to the consumers was obtained by heat treatment for 30 minutes. After the cold point of a whole raw chicken was inoculated with 7.29 log-cfu/g S. Enteritidis, thermal treatment was applied at 220°C top-bottom fan cooking mode. The temperature at the cold point of 35 and 45 minutes heat-treated chickens reached 59.33 and 74.08°C, respectively, and 1.93 log-cfu/g and 5.33 log-cfu /g S. Enteritidis reduction caused in the samples respectively. S. Enteritidis cells were not detected in the whole chicken heat treated at 220°C for 60 minutes. The cakes, heat treated at 160°C top-bottom fan cooking mode for 30 minutes, were stored at two different storage temperatures as 4°C and 25°C for 72 hours. The whole chicken, heat treated at 220°C top-bottom fan cooking mode for 60 minutes, was stored at 4°C for 72 hours. S. Enteritidis cells were not detected in the cake and the whole chicken samples after the storage period.
___
- Abellana M, Torres L, Sanchis V, Ramos AJ. 1997.
Caracterización de diferentes productos de bollerı́a
industrial: II. Estudio de la micoflora. Alimentaria, 287: 51–56.
- Anonim. 2011. Türk Gıda Kodeksi Mikrobiyolojik Kriterler
Yönetmeliği. Yayımlandığı resmi gazete: 29.12.2011-28157.
- Baik OD, Marcotte M, Castaigne F. 2000a. Cake baking in
tunnel type multi-zone industrial ovens Part I.
Characterization of baking conditions. Food Res. Int., 33(7):
587–598.
- Baik OD, Marcotte M, Castaigne F. 2000b. Cake baking in
tunnel type multi-zone industrial ovens part II. Evaluation of
quality parameters. Food Res. Int., 33(7): 599-607.
- Borch E, Arinder P. 2002. Bacteriological safety issues in red
meat and ready-to-eat meat products, as well as control
measures. Meat Sci., 62(3), 381–390.
- CDC (Centers for Disease Control and Prevention). 2009.
National Center for Emerging and Zoonotic Infectious
Diseases, Salmonellosis. Erişim adresi:
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/salmo
nellosis/#what [Erişim tarihi: 11.02.2017].
- CDC. 2011. Vital signs making food safer to eat reducing
contamination from the farm to the table. Erişim adresi:
http://www.cdc.gov/VitalSigns/pdf/2011-06-vitalsigns.pdf
[Erişim tarihi 29.04.2012].
- Chhabra AT, Carter WH, Linton RH, Cousin MA. 2002. A
predictive model that evaluates the effect of growth
conditions on the thermal resistance of Listeria
monocytogenes. Int. J. Food Microbiol., 78(3): 235-243.
- Farid M, Ghani AGA. 2004. A new computational technique for
the estimation of sterilization time in canned food. Chem
Eng Process., 43(4): 523-531.
- FDA-BAM online. 2001. Aerobic Plate Count, Bacteriological
Analytical Manual, Chapter: 3. Erişim adresi:
http://www.fda.gov/Food/ScienceResearch/LaboratoryMeth
ods/BacteriologicalAnalyticalManualBAM/ucm063346.html
[Erişim tarihi:20.03.2012].
- Fehaili S, Courel M, Rega B, Giampaol P. 2010. An
instrumented oven for the monitoring of thermal reactions
during the baking of sponge cake. J. Food Eng., 101(3):
253–263.
- Ismail SAS, Deak T, Abd El-Rahman HA, Yassien MAM,
Beuchat LR. 2000. Presence and changes in populations of
yeasts on raw and processed poultry products stored at
refrigeration temperature. Int. J. Food Microbiol., 62(1-2):
113-121.
- Jay JM. 2000. Modern Food Microbiology 6th Edition. Aspen
Publishers Inc. Gaithersburg, Maryland. 978-0-8342-1671-6.
- Ji Y, Zhu K, Qian H, Zhou H. 2007. Microbiological
characteristics of cake prepared from rice flour and sticky
rice flour. Food Control, 18(12): 1507-1511.
- Juneja VK, Eblen BS, Marks HM. 2001. Modeling non-liner
survival curves to calculate thermal inactivation of
salmonella in poultry of different fat level. Int. J. Food
Microbiol., 70(1-2): 37–51.
- Murphy RY, Davidson MA, Marcy JA. 2004a. Process lethality
prediction for Escherichia coli O157:H7 in raw franks
during cooking and fully cooked franks during post-cook
pasteurisation. J. Food Sci., 69(4): FMS112–FMS116.
- Murphy RY, Beard BL, Martin EM, Keener AE, Osaili T.
2004b, Predicting process lethality of Escherichia coli
O157:H7, Salmonella, and Listeria monocytogenes in
ground, formulated, and formed beef/turkey links cooked in
an air impingement oven, Food Microbiology, 21: 493-499.
- Murphy RY, Johnson ER, Marks BP, Johnson MG, Marcy JA.
2001. Thermal inactivation of Salmonella senftenberg and
Listeria innocua in ground chicken breast patties processed
in an air convection oven. Poultry Sci., 80: 515–521.
- Murphy RY, Marks BP, Johson ER, Johnson MG. 1999.
Inactivation of Salmonella and Listeria in grounda chicken
breast meat during thermal processing. J. Food Prot., 62(9):
980-985.
- Patsias A, Chouliara I, Badeka A, Savvaidis IN, Kontominas
MG. 2006. Shelf-life of a chilled precooked chicken product
stored in air and under modified atmospheres:
microbiological, chemical, sensory attributes. Food
Microbiol., 23(5): 423-429.
- Pittia P, Furlanetto R, Maifreni M, Mangina FT, Rosa MD.
2008. Safe cooking optimisation by F-value computation in
a semi-automatic oven. Food Control, 19: 688-697.
- Pradhan KP, Li Y, Marcy JA, Johnson MG, Tamplin ML. 2007.
Pathogen kinetics and heat and mass transfer-based
predictive model for Listeria innocua in irregular shaped
poultry products during thermal processing. J. Food Prot.,
70(3): 607-615.
- Rinaldi M, Chiavaro E, Massini R. 2012. Real-time estimation
of slowest heating point temperature and residual cooking
time by coupling multipoint temperature measurement and
mathematical modelling: Application to meat cooking
automation. Food Control, 23(2): 412-418.
- Sakin M, Kaymak-Ertekin F, Ilicali C. 2007. Simultaneous heat
and mass transfer simulation applied to convective oven cup
cake baking. J.Food Eng., 83(3): 463-474.
- Sánchez-Pardo ME, Ortiz-Moreno A, García-Zaragoza FJ,
Necoechea-Mondragón H, Chanona-Pérez JJ. 2012.
Comparison of pound cake baked in a two cycle microwavetoaster
oven and in conventional oven. Food Sci.Technol.,
46(1): 356–362.
- Schnepf M, Barbeau, WE, 1989. Survival of Salmonella
typhimurium in roasting chickens cooked in a microwave,
convection microwave, and a conventional electrical oven.
Journal of Food Saf., 9(4): 245–252.
- Shahapuzi NS, Taip FS, Ab Aziz N, Ahmedov A. 2015. Effect
of oven temperature profile and different baking conditions
on final cake quality. Int. J. Food Sci. Tech., 50: 723-729.
- Siripon K, Tansakul A, Mittal GS. 2007. Heat transfer
modeling of chicken cooking in hot water. Food Res. Int.,
40(7): 923-930.
- TSE EN ISO 6579, 2005, Mikrobiyoloji - Gıda ve Hayvan
Yemleri – Salmonella Türlerinin Belirlenmesi İçin Yatay
Yöntem.
- USDA-FSIS (United States Department of Agriculture-Food
Safety and Inspection Services). 1999. Performance
standards fort the production of certain meat and poultry
products. Fed. Reg., 64(3): 732-749.
- USDA-FSIS (United States Department of Agriculture-Food
Safety and Inspection Services). 2015. Chicken from farm to
table. Erişim adresi:
https://www.fsis.usda.gov/wps/portal/fsis/topics/foodsafety-
education/get-answers/food-safety-factsheets/
poultry-preparation/chicken-from-farm-to-table
[Erişim Tarihi: 12.04.2017].
- Wu VCH. 2008. A review of microbial injury and recovery
methods in food. Food Microbiol., 25(6): 735-744.
- Yilmaz I, Yetim H, Ockerman HW. 2002. The Effect of
different cooking procedures on microbiological and
chemical quality characteristics of Tekirdağ meatballs.
Nahrung/Food, 46(4): 276-278.