Güneş Enerjisi Destekli Kurutma Yöntemlerinin Gıda Endüstrisinde Kullanımı

Kurutulmuş ürünler geçmişten günümüze uzun raf ömürleri, gıda bileşenleri açısından zengin içeriği ve kolay elde edilmeleri nedeniyle yaygın olarak kullanılmaktadır. Herhangi bir ekipmana ihtiyaç duyulmaması, ekonomik ve basit kullanımı nedeniyle güneşte veya gölgede kurutma yöntemleri geçmişten günümüze en yaygın kullanılan kurutma tekniği olmuştur. Ancak bu kurutma yönteminin uzun süre alması, kontaminasyona açık olması, geniş alan gereksinimi ve yoğun işçilik ihtiyacı gibi dezavantajları bulunmaktadır. Bu derlemede öncelikle gıdalarda uygulanan çeşitli kurutma yöntemleri özetlenmiştir. Daha sonra güneş enerjisi destekli kurutma yöntemleri detaylı şekilde irdelenmiştir. Son olarak enerji deposu içeren güneş enerjisi destekli kurutma yöntemleri incelenmiştir. Güneş enerjisi destekli kurutma yöntemi ekonomik ürün eldesi için oldukça avantajlı bir teknik olarak öne çıkmaktadır. İstenilen özellikleri sağlamak amacıyla sistemin çok farklı şekillerde tasarlanabilmesi bu tekniğin en önemli avantajlarındandır. Ayrıca çeşitli enerji depolarının kullanılabilmesi sistemin kullanılabilirliğine katkıda bulunmaktadır.

Use of Solar Energy Assisted Drying Methods in the Food Industry

Dried products are widely used from the past because of their long shelf life, rich nutrient content and availability. Solar or shade drying methods have become the most widely used drying technique from past to date, due to no equipment requirement, cost and simplicity. However, this drying method has some disadvantages such as long drying time, contamination risk and requirement of large area and heavy labor. In this review, various drying methods applied in food are summarized. Then, solar energy assisted drying methods were examined in detail. Finally, solar energy-assisted drying methods involving energy storage are examined. Solar energy assisted drying is a very advantageous technique for economical production. The most important advantages of this technique are that the system can be designed in many different ways in order to provide the desired characteristics. In addition, the availability of various energy storage units contributes to the availability of the system.

___

  • Agrawal A, Sarviya R. 2016. A review of research and development work on solar dryers with heat storage. International Journal of Sustainable Energy, 35 (6): 583-605.
  • Anonim. 2006. http://www1.gantep.edu.tr/dalgic/gunes.htm. In).
  • Atalay Ö. 2010. Güneş enerjisi destekli nem almalı ısı pompalı kurutucunun tasarımı ve termodinamik analizi. Unpublished Doktora Tezi, Pamukkale Üniversitesi, Denizli.
  • Aumporn O, Zeghmati B, Chesneau X, Janjai S. 2018. Numerical study of a solar greenhouse dryer with a phase-change material as an energy storage medium. Heat Transfer Research, 49 (6).
  • Ayyappan S, Mayilsamy K, Sreenarayanan V. 2016. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat and Mass Transfer, 52 (3): 459-467.
  • Bayhan HA. 2011. Kabin tipi bir kurutucuda kurutma sürecini etkileyen parametrelerin deneysel olarak incelenmesi. Unpublished Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.
  • Bingöl G, Devres O. 2011. Gıda işlemede kurutma teknolojilerinin temel ilkeleri: İstanbul Sanayi Odası.
  • Bolaji BO, Olalusi AP. 2008. Performance evaluation of a mixedmode solar dryer.
  • Cemeroğlu B. 2009. Meyve ve sebze işleme teknolojisi Ankara.
  • Chen H-H, Hernandez CE, Huang T-C. 2005. A study of the drying effect on lemon slices using a closed-type solar dryer. Solar Energy, 78 (1): 97-103.
  • Coşkun F. 2014. Valsli kurutucuda elma tozu eldesi. Unpublished Yüksek Lisans Tezi, Ege Üniversitesi, İzmir.
  • Daghigh R, Ruslan MH, Sulaiman MY, Sopian K. 2010. Review of solar assisted heat pump drying systems for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14 (9): 2564-2579.
  • Devahastin S, Pitaksuriyarat S. 2006. Use of latent heat storage to conserve energy during drying and its effect on drying kinetics of a food product. Applied thermal engineering, 26 (14-15): 1705-1713.
  • Doymaz I. 2004. Convective air drying characteristics of thin layer carrots. Journal of food engineering, 61 (3): 359-364.
  • Eke BA. 2013. Development of small scale direct mode natural convection solar dryer for tomato, okra and carrot. International Journal of Engineering and Technology, 3 (2): 199-204.
  • Ekechukwu OV, Norton B. 1999. Review of solar-energy drying systems II: an overview of solar drying technology. Energy conversion and management, 40 (6): 615-655.
  • El-Beltagy A, Gamea G, Essa AA. 2007. Solar drying characteristics of strawberry. Journal of food engineering, 78 (2): 456-464.
  • El-Sebaii A, Shalaby S. 2013. Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy Conversion and Management, 74: 109-116.
  • El-Sebaii A, Shalaby S. 2017. Experimental Investigation of Drying Thymus Cut Leaves in Indirect Solar Dryer With Phase Change Material. Journal of Solar Energy Engineering, 139 (6): 061011.
  • ELkhadraoui A, Kooli S, Hamdi I, Farhat A. 2015. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy, 77: 1-8.
  • Esper A, Mühlbauer W. 1998. Solar drying-an effective means of food preservation. Renewable Energy, 15 (1-4): 95-100.
  • Evranuz EÖ. 1998. Gıda Mühendisliği Tasarımı Ders Notları. İstanbul Teknik Üniversitesi.
  • Gallali YM, Abujnah YS, Bannani FK. 2000. Preservation of fruits and vegetables using solar drier: a comparative study of natural and solar drying, III; chemical analysis and sensory evaluation data of the dried samples (grapes, figs, tomatoes and onions). Renewable Energy, 19 (1-2): 203-212.
  • Ghazanfari A, Tabil Jr L, Sokhansanj S. 2003. Evaluating a solar dryer for in-shell drying of split pistachio nuts. Drying Technology, 21 (7): 1357-1368.
  • Guzmán-Valdivia CH, Carrera-Escobedo JL, García-Ruíz MA, Ortíz-Rivera A, Désiga-Orenday O. 2016. Design,
  • development and control of a portable laboratory for the chili drying process study. Mechatronics, 39: 160-173.
  • Gürlek G, Özbalta N, Güngör A. 2009. Solar tunnel drying characteristics and mathematical modelling of tomato. Journal of Thermal Science and Technology, 29 (1): 15-23.
  • Hossain M, Bala B. 2007. Drying of hot chilli using solar tunnel drier. Solar Energy, 81 (1): 85-92.
  • Jain D. 2007. Modeling the performance of the reversed absorber with packed bed thermal storage natural convection solar crop dryer. Journal of food engineering, 78 (2): 637-647.
  • Kaewkiew J, Nabnean S, Janjai S. 2012. Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Engineering, 32: 433-439.
  • Kamble A, Kalbande S, Deshmukh M, Gadge S. 2011. Solar drying system for energy conservation. Applied Solar Energy, 47 (2): 124.
  • Kant K, Shukla A, Sharma A, Kumar A, Jain A. 2016. Thermal energy storage based solar drying systems: a review. Innovative Food Science & Emerging Technologies, 34: 86- 99.
  • Karaaslan S. 2012. Meyve ve sebzelerin mikrodalga destekli kurutma sistemleri ile kurutulması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 7 (2): 123-129.
  • Karel M. 1991. Physical structure and quality of dehydrated foods. In 7 th International Drying Symposium in conjunction with the CSISA'90 Congress, Prague, Czech, 08/90, (pp. 26-35).
  • Kaygusuz K. 1995. Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy conversion and management, 36 (5): 315-323.
  • Lingayat A, Chandramohan V, Raju V. 2017. Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia, 109: 409-416.
  • Mohanraj M, Chandrasekar P. 2009. Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying. Journal of Engineering Science and Technology, 4 (3): 305-314.
  • Ogheneruona D, Yusuf MO. 2011. Design and fabrication of a direct natural convection solar dryer for tapioca. Leonardo Electronic Journal of Practices and Technologies, 3: 95-104.
  • Ogura H, Mujumdar AS. 2000. Proposal for a novel chemical heat pump dryer. Drying Technology, 18 (4-5): 1033-1053.
  • Olgun H, Rzayev P. 2000. Fındığın üç farklı sistemde güneş enerjisi ile kurutulması. Tr J Engin Environ Sci, Tübitak, 24: 1-14.
  • Rabha D, Muthukumar P, Somayaji C. 2017. Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renewable Energy, 105: 583-589.
  • Rajagopal T, Sivakumar S, Manivel R. 2014. Development of solar dryer incorporated with evacuated tube collector. International Journal of Innovative Research in Science, Engineering and Technology, 3 (3): 2655-2658.
  • Ratti C. 2001. Hot air and freeze-drying of high-value foods: a review. Journal of food engineering, 49 (4): 311-319.
  • Salunkhe DK, Bolin HR, Reddy N. 1991. Storage, processing, and nutritional quality of fruits and vegetables. Volume I. Fresh fruits and vegetables: CRC press.
  • Selçuk MK, Ersay Ö, Akyurt M. 1974. Development, theoretical analysis and performance evaluation of shelf type solar driers. Solar Energy, 16 (2): 81-88.
  • Shalaby S, Bek M. 2014. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy conversion and management, 83: 1-8.
  • Shanmugam V, Natarajan E. 2007. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror. Applied Thermal Engineering, 27 (8): 1543-1551.
  • Sharma A, Tyagi VV, Chen C, Buddhi D. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews, 13 (2): 318-345.
  • Song M, Songlin Y, Biguang Z, Dong Z. 2011. Experimental Research of Grape Drying Using Solar Dryer with Latent Heat Storage System. In Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011 International Conference on, (pp. 740-742): IEEE.
  • Tang J, Yang T. 2004. Dehydrated vegetables: principles and systems: Marcel Dekker: New York.
  • Tarhan S, Ergüneş G, Tekelioğlu O. 2007. Tarımsal ürünler için güneş enerjili kurutucuların tasarım ve işletme esasları. Tesisat Mühendisliği Dergisi, 99: 26-32.
  • Tefera A, Endalew W, Fikiru B. 2013. Evaluation and demonstration of direct solar potato dryer.
  • Telis V, Sobral P. 2002. Glass transitions for freeze-dried and airdried tomato. Food Research International, 35 (5): 435-443.
  • Toğrul İT, Pehlivan D. 2002. Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55 (3): 209-216.
  • Tontul I, Topuz A. 2017. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63: 91-102.
  • Us F. 2006. Ozmotik kurutma. Türkiye 9. Gıda Kongresi: 24-26.
  • Vijayan S, Arjunan T, Kumar A. 2016. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative food science & emerging technologies, 36: 59-67.
  • Visavale G. 2012. Principles, classification and selection of solar dryers. Solar drying: Fundamentals, Applications and Innovations, Ed. Hii, CL, Ong, SP, Jangam, SV and Mujumdar, AS, Published in Singapore: 1-50.
  • Yağcıoğlu A. 1999. Tarım Ürünleri Kurutma Tekniği (I. Basım), Ege Üniversitesi Ziraat Fakültesi Yayınları, No. 536, 348 s. In): Bornova-İzmir.
  • Yaşartekin Y. 1991. Kabinet tipi, güneşi dikey eksende belirli aralıklarla İzleyen, güneş enerjili kurutucunun tasarımı ve tarımsal ürünlerin kurutulmasında denenmesi. Unpublished Yüksek Lisans Tezi, Ege Üniversitesi, İzmir.
  • Yılmaz HN. 2000. Güneş pili tahrikli model bir güneşli kurutucunun geliştirilmesi ve kurutulmuş domates üretiminde teorik ve deneysel İncelenmesi. Unpublished Doktora Tezi, Ege Üniversitesi, İzmir.
  • Yokuş B. 2014. Farklı ön işlemlerin ve uygulanan farklı kurutma yöntemlerinin elmada toplam fenol miktarı ve antioksidan aktivite üzerine etkileri. Unpublished Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Bilecik.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)