Free Radical Scavenging Activity and Biochemical characteristics of Ulva rigida (Ulvophyceae) and Arthrospira platensis (Cyanophyceae)

In this study, the antioxidant activities and biochemical characteristics of Ulva rigida (Ulvophyceae) and Arthrospira platensis (Cyanophyceae) were determined. The extracts from two seaweed species were evaluated for their free radical scavenging activity, using the 1,1-diphenyl-2-picrylhydrazyl hydrate (DPPH) method, their total phenolic, flavonoid, and condensed tannin contents, through Folin–Ciocalteu, Quettier-Deleu, and Price methods, respectively. The extracts of two seaweeds showed a low free radical scavenging capacity in comparison with commercial antioxidant BHT (butylated hydroxytoluene), and vitamin C. The extract of U. rigida demonstrated greater antioxidant potential with a low IC50 (3.76±0.02 mg/g Ext.). The total phenolic contents were ranged from 2.21±0.08 (U. rigida) to 8.59±0.62 (A. platensis) mg GAE/g of extract. The highest flavonoid content was found in A. platensis as 22.70±0.65 mg rutin/g of extract. The contents of condensed tannin were measured 3.01±0.11 mg CE/g of extract for A. platensis and 3.76±0.06 mg CE/g of extract for U. rigida. According to results obtained, U. rigida and A. maxima possess antioxidant activity and could be used in for future applications in medicine, functional foods, and agriculture.

___

Ak I, Türker G. 2018. Antioxidant properties and phytochemicals of three brown macroalgae from the Dardanelles (Çanakkale) Strait. Agricultural Science and Technology. 10(4): 354-357. DOI: 10.15547/ast.2018.04.065

Ak I, Öztaşkent C, Özüdoğru Y, Göksan T. 2015. Effect of sodium acetate and sodium nitrate on biochemical composition of green algae Ulva rigida. Aquacult Int. 23(1):1-11. DOI: 10.1007/s10499-014-9793-3.

Alenisan MA, Alqattan HH, Tolbah LS, Shori AB. 2017. Antioxidant properties of dairy products fortified with natural additives: A review. Journal of the Association of Arab Universities for Basic and Applied Sciences. 24:101-106. DOI: 10.1016/j.jaubas.2017.05.001

Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol., 28; 25-30.

Choe E. 2017. Effect and mechanisms of minor compounds in oil on lipid oxidation. Ed. Akoh C.C., In: Food Lipids: Chemistry, Nutrition, and Biotechnology. CRC Press.Boca Raton, Fourth Edition. ISBN: 978-1-4987-4485-0 pp:567-590.

Cox S, Abu-Ghannam N, Gupta S, 2010. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17, 205 – 220.

Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocher, Vidal N. 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97:654–660. DOI: 10.1016/j.foodchem. 2005.04.028

Duan XJ, Zhang WW, Li XM, Wang BG. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry 95: 37-43. DOI: 10.1016/j.foodchem.2004.12.015

Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10(1):25–28. DOI: 10.1016/S0924-2244(99)00015-1

Gargouri M, Magne C, El Feki A. 2016. Hyperglycemia, oxidative stress, liver damage and dysfunction in alloxaninduced diabetic rat are prevented by Spirulina supplementation. Nutr Res 36(11):1255-1268. DOI: 10.1016/j.nutres.2016.09.011.

Goiris K, Muylaert K, Frayee I, Foubert I, De Brabanter J, De Cooman L. 2012. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Pyhcol 24:1477-1486. DOI: 10.1007/s10811-012-9804-6

Gordillo FJL, Jiménez C, Goutx M, Niell X. 2001. Effects of CO2 and nitrogen supply on the biochemical composition of Ulva rigida with special emphasis on lipid class analysis. J Plant Physiol 158(3):367–373. DOI: 10.1078/0176-1617-00209

Guiry MD and Guiry GM, 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 19 February 2019.

Ismail GA. 2017. Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Science and Technology, 37(2), 294 – 302. DOI: 10.1590/1678-457X.20316

Jensen GS, Attridge VL, Beaman JL, Guthrie J, Ehmann A, Benson KF. 2015. Antioxidant and Anti-Inflammatory Properties of an Aqueous Cyanophyta Extract Derived from Arthrospira platensis: Contribution to Bioactivities by the Non-Phycocyanin Aqueous Fraction. Med Food 18 (5):535– 541. DOI: 10.1089/jmf.2014.0083

Jerez-Martel I, Garcia-Poza S, Rodriguez-Martel G, Rico M, Afonso-Olivares C, Gomez-Pinchetti JL. 2017. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Hindawi Journal of Food Quality. 2017:1-8. DOI: 10.1155/2017/2924508

Kazir M, Abuhassira Y, Robin A, Nahor O, Luo J, Israel A, Golberg A, Livney YD. 2019. Extraction of proteins from two marine macroalgae Ulva sp. And Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids. 87: 194 – 203. DOI: 10.1016/j.foodhyd.2018.07.047

Klejdus B, Kopecky J, Benêsová L, Vacek J. 2009. Solid phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. Journal of Chromatography A, 1216(5):763–771. DOI: 10.1016/j.chroma. 2008.11.096

Kumar CS, Ganesan P, Suresh PV, Bhaskar N. 2008. Seaweeds as a source of nutritionally beneficial compounds, a review. Journal of Food Science Technology 45:1-13.

Kumar J, Khan A, Mandotora SK, Dhar P, Tayade AB, Verma S, Toppo K, Arora R, Upreti DK, Chaurasie OP. 2019. Nutraceutical profile and evidence of alleviation of oxidative stress by Spirogyra particles (Muell.) Cleve inhabiting the high altitude Trans-Himalayan Region. Scientific Reports 9:4091. DOI: 10.1038/s41598-018-35595-x

Liu JG, Hou CW, Lee SY, Chuang Y, Lin CC. 2011. Antioxidant effects and UVB protective activity of Spirulina (Arthrospira platensis) products fermented with lactic acid bacteria. Process Biochemistry. 46(7): 1405-1410. DOI: 10.1016 /j.procbio.2011.03.010

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. 2004. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747. DOI: 10.1093/ajcn/79.5.727

Matanjun P, Suhaila M, Mohamed MN, Kharidah M, and Hwee MC. 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. Journal of Applied Phycology, 367: 1573-5176. DOI: 10.1007/s10811- 007-9264-6

Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules. 19(10): 16240–16265. DOI: 10.3390 /molecules191016240

Mueller-Harvey I. 2006. Unraveling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, 86(13): 2010-2037.DOI: 10.1002/jsfa.2577

Piluzza G, Bullitta S. 2011.Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in Mediterranean area. Pharmaceutical Biology, 49:240-247. DOI: 10.3109 /13880209.2010.501083

Plaza M, Herrero M, Alejandro Cifuentes, E. Ibáñez, 2009. Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 57(16):7159–7170. DOI: 10.1021/jf901070g

Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz- Suárez LE. 2011. Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129(2):491–498. DOI: 10.1016/j.foodchem.2011.04.104

Pisoschi AM, Pop A. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry. 97:55-74. DOI: 10.1016 /j.ejmech.2015.04.040

Price ML, Vanscoyoc S, Butler LG. 1978. Critical evaluation of Vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26 (5):1214-1218. DOI: 10.1021 /jf60219a031

Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet J, Luyck M, Cazin M, Cazin JC, Bailleul F, Trotin F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 72(1-2):35-40. DOI: 10.1016/S0378-8741 (00)00196-3

Rodrigo R, Bosco C. 2006. Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol. 142(3-4):317-27. DOI: 10.1016/j.cbpc. 2005.11.002

Shalaby EA. 2015. Algae as a Natural Source of Antioxidant Active Compounds. Plants as a Source of Natural Antioxidants In: Ed. Dubey NK. CAB International. Oxfordshire. ISBN: 978-1-78064-266-6. pp: 129-147.

Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N. 2013. Potential applications of antioxidants – A review. Journal of Pharmacy Research. 7: 828 – 835. DOI: 10.1016 /j.jopr.2013.10.001

Trigui M, Gasmi L, Zouari I, Tounsi S. 2013. Seasonal variation in phenolic composition, antibacterial and antioxidant activities of Ulva rigida (Chlorophyta) and assessment of antiacetylcholinesterase potential. J Appl Phycol 25:319-328. DOI: 10.1007/s10811-012-9866-5

Vasconcelos JB, de Vasconcelos ERTPP, Urrea-Victoria V, Bezerra PS, Reis TNV, Cocentino ALM, Navarro DMAF, Chow F, Areces AJ, Fuji MT. 2018. Antioxidant activity of three seaweeds from tropical reefs of Brazil: potential sources for bioprospecting. Journal of Applied Phycology. DOI: 10.1007/s10811-018-1556-5

Vonshak A. 1997. Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology (1st ed.). London: Taylor and Francis Ltd. ISBN: 978-0-7484-0674-6

Wang L, Pan B, Sheng J, Xu J, Hu Q. 2007. Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chemistry, 105, 36–41. DOI: 10.1016/j.foodchem.2007.03.054

Yuan YV, Carrington MF, Walsh NA. 2005. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food and Chemical Toxicology 43: 1073-1081.DOI. 10.1016/j.fct.2005.02.012

Zarrouk, C., 1966. Contribution à l'étude d'une Cyanophycée. Influènce de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthèse de Spirulina maxima (Setch. et Gardner) Geitler, Paris, France, University of Paris.

Zubek S, Mielcarek S, Turnau K. 2012. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22(2): 149-156.DOI: 10.1007/s00572-011-0391-1

Zubia M, Robledo D, Frelie-Pelegrin Y. 2007. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Physiol, 19, 449 – 458. DOI: 10.1007/s10811-006-9152-5