Genetiği Değiştirilmiş Organizmaların Tespiti ve Ölçümünde Kullanılan Farklı Gerçek Zamanlı PCR Kimyasallarının Karşılaştırılması

Gerçek zamanlı kantitatif polimeraz zincir reaksiyonu (q-PCR), hem gen ekspresyonu analizinde hem de rutin Deoksiribo Nükleik Asit (DNA) ölçümünde nükleik asit miktarının belirlenmesi için kullanılan ileri moleküler bir yöntemdir. Gıda ve yem ürünlerinde genetiği değiştirilmiş organizma (GDO) kalıntıları için etiketleme eşiğinin Japonya’da %5, Avrupa Birliği’nde ise %0,9 olduğu göz önüne alındığında, doğru bir ölçüm metodu şarttır. GDO bileşenlerinin tespiti, kesin miktar tayini ve besin matrislerinde eser miktardaki kalıntısının tespit edilmesi q-PCR’da mümkündür. Bu amaçla çeşitli q-PCR kimyasalları kullanılmaktadır. Bunlar; interkalasyon boyaları, primer bazlı kimyasallar ve prob bazlı kimyasallar olarak üç gruba ayrılmaktadır. Marketlerde GDO ürünlerinin artan sayısıyla birlikte, her örnek için gerçekleştirilen analiz sayısı ve bu nedenle analiz maliyetleri artmaktadır. Bunun için GDO çalışmalarında, GDO’ların varlığının miktarını belirlemede hızlı ve ekonomik olan uygulanabilir taramalar yapılabilmesi için geliştirilmiş tespit yöntemlerine ihtiyaç duyulmaktadır. Bu çalışmada, q-PCR kimyaları ekonomikliği, verimliliği ve uygulanabilirliği açısından karşılaştırılmıştır.

The Comparison of Various Real Time PCR Chemistries Used in Detection and Quantification of Genetically Modified Organisms

Real-time quantitative polymerase chain reaction (q-PCR) is an advanced molecular method for determining the amount of nucleic acid in both gene expression analysis and routine Deoxyribo Nucleic Acid (DNA) measurement. An accurate measurement method is essential given that the labelling threshold for genetically modified organisms (GMO) residues in food and feed products is 5% in Japan and 0,9% in the European Union. Determination of GMO components, quantification of exact amount and determination of trace amounts in food matrices are possible in q-PCR. Various q-PCR chemicals are used for this purpose. These; intercalation dyes, primary based, chemicals and probe based chemicals. With the increasing number of GMO products in the grocery stores, the number of analyses performed per sample and thus the cost of analysis increase. For this purpose, in GMO studies, improved detection methods are needed to determine the presence of GMOs in order to perform fast and economically feasible scans. In this study, q-PCR chemistries were compared in terms of cost, efficiency and applicability.

___

Andersen CB, Holst-Jensen A, Berdal KG, Thorstense T, Tengs T. 2006. Equal performance of TaqMan, MGB, molecular beacon, and SYBR green-based detection assays in detection and quantification of roundup ready soybean. Journal of agricultural and food chemistry, 54(26): 9658-9663. DOI: org/10.1021/jf061987c.

Arslanhan S. 2010. Türkiye, GDO ile Ekonomik ve Sosyal Açıdan Nasıl Getiri Sağlar? TEPAV Politika Notu. https://www.tepav.org.tr/upload/files/1271313864r1670.Tur kiye_GDO_ile_Ekonomik_ve_Sosyal_Acidan_Nasil_Getiri _Saglar.pdf.

Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara , Morisset, D. 2014. Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science & Technology, 37(2): 115-126. DOI: org/10.1016/ j.tifs.2014.03.008.

Cockerill III, FR. 2003. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Archives of pathology & laboratory medicine, 127(9): 1112-1120. Volume 127, Issue 9 (September 2003).

Costa JM, Ernault P, Olivi M, Gaillon T, Arar K. 2004. Chimeric LNA/DNA probes as a detection system for real-time PCR. Clinical biochemistry, 37(10): 930-932. DOI: org/10.1016/ j.clinbiochem.2004.05.020.

Deisingh AK, Badrie N. 2005. Detection approaches for genetically modified organisms in foods. Food Research International, 38(6): 639-649. DOI: org/10.1016/ j.foodres.2005.01.003.

Duck P, Alvarado-Urbina G, Burdick B, Collier B. 1990. Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques, 9(2): 142-148. PMID:2400595.

Gašparič MB, Cankar K, Žel J, Gruden K. 2008. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC biotechnology, 8(1): 26. DOI:10.1186 /1472-6750-8-26.

Gašparič MB, Tengs T, La Paz JL, Holst-Jensen A, Pla M, Esteve T, Gruden K. 2010. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Analytical and bioanalytical chemistry, 396(6): 2023-2029. DOI: 10.1007/s00216-009-3418-0.

Hernández M, Esteve T, Prat S, Pla M. 2004. Development of real-time PCR systems based on SYBR® Green I, Amplifluor™ and TaqMan® technologies for specific quantitative detection of the transgenic maize event GA21. Journal of Cereal Science, 39(1): 99-107. DOI: org/10.1016/S0733-5210(03)00071-7.

Higuchi R, Fockler, C, Dollinger G, Watson R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Bio/technology, 11(9): 1026. DOI:10.1038 /nbt0993-1026.

Holland PM, Abramson RD, Watson R, Gelfand, DH. 1991. Detection of specific polymerase chain reaction product by utilizing the 5'----3'exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences, 88(16): 7276-7280. DOI: org/10.1073 /pnas.88.16.7276.

Holst-Jensen A. 2007. Sampling, detection, identification and quantification of genetically modified organisms (GMOs). In Food Toxicants Analysis (pp. 231-268). Elsevier.

Holst-Jensen A, Rønning S B, Løvseth A, Berdal KG. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Analytical and Bioanalytical Chemistry, 375(8): 985-993. DOI:10.1007/s00216-003- 1767-7.

Huang CC, Pan TM. 2005. Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean. Journal of agricultural and food chemistry, 53(10): 3833-3839. DOI: org/10.1021/jf048580x.

James C. 2011. Global status of commercialized biotech/GM crops, 2011 (Vol. 44). Ithaca, NY: ISAAA. ISBN:978-1- 892456-52-4.

James CA. 2005. Preview: global status of commercialized biotech/GM crops. ISAAA brief.

Kahya S, Buyukcangaz E, Carlı KT. 2013. Polimeraz Zincir Reaksiyonu (PCR) Optimizasyonu. Journal of the Faculty of Veterinary Medicine/Veteriner Fakultesi Dergisi, 32(1): Erişim Adresi: https: //dergipark. org.tr /tr/pub/uluvfd/ issue/13516/ 163496. 27.09.19.

Kıran F, Osmanağaoğlu Ö. 2011. Gıdalarda Genetik Yapısı Değiştirilmiş Organizmaların (GDO) Belirlenmesi. GIDA, 36(5): 295-302. Erişim Adresi https://dergipark.org.tr /tr/pub/gida/issue/6914/92402 27.09.19.

Koshkin AA, Singh S K, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Wengel J. 1998. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5- methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron, 54(14): 3607-3630. DOI: org/10.1016/S0040-4020(98)00094-5.

Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Dempcy R. 2000. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic acids research, 28(2): 655-661. DOI: org/10.1093/nar/28.2.655.

Lee SI, Kim SA, Park SH, Ricke SC. 2019. Molecular and New- Generation Techniques for Rapid Detection of Foodborne Pathogens and Characterization of Microbial Communities in Poultry Meat. In Food Safety in Poultry Meat Production (pp. 235-260). Springer, Cham.

Mullis K, Faloona F, Scharf S, Saiki RK, Horn GT, Erlich H. 1986, January. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In Cold Spring Harbor symposia on quantitative biology (Vol. 51, pp. 263-273). Cold Spring Harbor Laboratory Press. DOI:10.1101 /SQB.1986.051.01.032.

Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A. 2002. Nucleic Acids Res 30: 2089–2195. DOI: org/10.1093 /nar/30.9.2089.

Nazarenko IA, Bhatnagar SK, Hohman RJ. 1997. Nucleic Acids Res 25: 2516–2521. DOI: org/10.1093/nar/25.12.2516.

Roberts RJ. 1985. Restriction and modification enzymes and their recognition sequences. Nucleic acids research, 13(Suppl), r165. DOI: 10.1093/nar/13.suppl.r165.

Peng X, Nguyen A, Ghosh D. 2018. Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR. Journal of virological methods, 252: 100-107. DOI: org/10.1016/j.jviromet.2017.11.012.

Schneeberger C, Speiser P, Kury F, Zeillinger R. 1995. Quantitative detection of reverse transcriptase-PCR products by means of a novel and sensitive DNA stain. Genome Research, 4(4): 234-238. ISSN: 1054-9803/9.

Sherrill CB, Marshall DJ, Moser MJ, Larsen CA, Daude-Snow L, Jurczyk S, Shapiro G, Prudent JR. 2004. J Am Chem Soc 126: 4550–4556. DOI: org/10.1021/ja0315558.

Taverniers I, Van Bockstaele E, De Loose M. 2004. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 378(5): 1198-1207. DOI: 10.1007/s00216-003-2372-5.

Terry CF, Shanahan DJ, Ballam LD, Harris N, McDowell DG, Parkes HC. 2002. Real-time detection of genetically modified soya using Lightcycler and ABI 7700 platforms with TaqMan, Scorpion, and SYBR Green I chemistries. Journal of AOAC International, 85(4): 938-944.

Tyagi S, Kramer FR. 1996. Molecular beacons: probes that fluoresce upon hybridization. Nature biotechnology, 14(3): 303. DOI:10.1038/nbt0396-303.

Zhang D, Guo J. 2011. The development and standardization of testing methods for genetically modified organisms and their derived products F. Journal of Integrative Plant Biology, 53(7): 539-551. DOI: org/10.1111/j.1744-7909.2011.01060.x.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)