Et Ürünlerinde Nitrit Kullanımını Azaltma Yöntemlerinde Güncel Yaklaşımlar ve Sanayiye Aktarılma Potansiyelleri

Günümüzde tüketicilerin sağlıklı ve doğal gıda talebi et endüstrisine de yansıyarak bu konuda yapılan araştırmalar ve yatırımlar hız kazanmıştır. Nitrit et ürünlerinde; karakteristik renk ve lezzetin gelişimine katkıda bulunması, lipit oksidasyonunu kontrol altına alması ve başta Clostridium botulinum olmak üzere patojen mikroorganizmalar üzerine antimikrobiyal etki göstermesi nedenleriyle yaygın olarak kullanılan sentetik katkı maddesidir. Ancak nitritin toksik, mutajenik ve kanserojenik N-nitrozamin bileşiklerinin oluşumuna neden olması ve insan sağlığı üzerinde risk oluşturması alternatif katkı arayışlarına yol açmıştır. Bu konuda yapılan çalışmaların önemli bir kısmının içeriğini, doğal katkı maddelerinin nitrite alternatif olarak kullanımının denenmesi oluşturmaktadır. Son yıllarda ise et ürünlerinde nitrat ve nitrit kullanımı yerine organik asitlerin, mikrobiyal kaynakların kullanımı çalışmaları da artmıştır. Bu yöntemlere ek olarak yüksek basınç, ışınlama, enkapsülasyon, nitrit içeren aktif ambalaj, çinko protoporfirin IX bileşiği oluşumu ve soğuk plazma teknolojisi gibi güncel teknolojik uygulamalar da et ürünlerinde nitrit oranının düşürülmesi konusunda karşımıza çıkan diğer araştırma alanlarını oluşturmaktadır. Bu derleme kapsamında, kürlenmiş et ürünlerinde nitritin fonksiyonları, nitrit oranının azaltılması amacıyla araştırılan ve uygulanan güncel yöntemler ve bu yöntemlerin sanayiye aktarımındaki olası kısıtlamalar incelenmiştir.

Current Approaches to Nitrite Reduction Methods in Meat Products and Their Potential for Transfer to Industry

Nowadays, consumer demand for healthy and natural food is reflected in the meat industry and researches and investments on this issue have gained speed. Nitrite is a widely used synthetic additive in meat products due to its contribution to the development of characteristic color and flavor, controls lipid oxidation and has an antimicrobial effect on pathogenic microorganisms, especially Clostridium botulinum. However, the fact that nitrite causes the formation of toxic, mutagenic and carcinogenic N-nitrosamine compounds and constitutes a risk to human health has led to the searches for alternative additives. An important part of the studies on this subject consists of testing the use of natural additives as an alternative to nitrite. In recent years, instead of using nitrate and nitrite in meat products, studies have been carried out to use organic acids and microbial resources. In addition to these methods, up-to-date technology applications such as high pressure, irradiation, encapsulation, active packaging containing nitrite, zinc protoporphyrin IX compound formation and cold plasma technology constitute other research areas that we encounter in reducing the nitrite rate in meat products. Within the scope of this review, the functions of nitrite in cured meat products, current potential methods for reducing nitrite content and the limitations of transferring these methods to industry were examined.

___

  • Aasen IM, Markussen S, Møretrø T, Katla T, Axelsson L, Naterstad K. 2003. Interactions of the bacteriocins sakacin P and nisin with food constituents. International Journal of Food Microbiology, 87(1-2): 35-43. doi: https://doi.org/ 10.1016/S0168-1605(03)00047-3
  • Adamsen CE, Møller JK, Laursen K, Olsen K, Skibsted LH. 2006. Zn-porphyrin formation in cured meat products: Effect of added salt and nitrite. Meat Science, 72(4): 672-679. doi: https://doi.org/10.1016/j.meatsci.2005.09.017
  • Ahn HJ, Kim JH, Jo C, Lee CH, Byun MW. 2002. Reduction of carcinogenic N‐nitrosamines and residual nitrite in model system sausage by irradiation. Journal of Food Science, 67(4): 1370-1373. doi: https://doi.org/10.1111/j.1365- 2621.2002.tb10291.x
  • Alahakoon AU, Jayasena DD, Ramachandra S, Jo C. 2015. Alternatives to nitrite in processed meat: Up to date. Trends in Food Science and Technology, 45(1): 37-49. doi: https://doi.org/10.1016/j.tifs.2015.05.008
  • Alirezalu K, Hesari J, Nemati Z, Munekata PE, Barba FJ, Lorenzo JM. 2019. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Research International, 120: 839-850. doi: https://doi.org/10.1016/ j.foodres.2018.11.048
  • Asaduzzaman M, Ohya M, Kumura H, Hayakawa T, Wakamatsu JI. 2020. Searching for high ZnPP-forming edible bacteria to improve the color of fermented meat products without nitrite/nitrate. Meat Science, 108109. doi: https://doi.org/ 10.1016/j.meatsci.2020.108109
  • Ayana B, Turhan, KN. 2010. Gıda ambalajlamasında antimikrobiyel madde içeren yenilebilir filmler/kaplamalar ve uygulamaları. Gıda, 35(2): 151-158.
  • Aymerich T, Picouet PA, Monfort JM. 2008. Decontamination technologies for meat products. Meat Science, 78(1-2): 114- 129. doi: https://doi.org/10.1016/j.meatsci.2007.07.007
  • Bajovic B, Bolumar T, Heinz V. 2012. Quality considerations with high pressure processing of fresh and value added meat products. Meat Science, 92(3): 280-289. doi: https://doi.org/10.1016/j.meatsci.2012.04.024
  • Becker EM, Westermann S, Hansson M, Skibsted LH. 2012. Parallel enzymatic and non-enzymatic formation of zinc protoporphyrin IX in pork. Food Chemistry, 130: 832–840. doi: https://doi.org/10.1016/j.foodchem.2011.07.090
  • Blanco-Lizarazo CM, Betancourt-Cortés R, Lombana A, Carrillo-Castro K, Sotelo-Díaz I. 2017. Listeria monocytogenes behaviour and quality attributes during sausage storage affected by sodium nitrite, sodium lactate and thyme essential oil. Food Science and Technology International, 23(3): 277-288. doi: https://doi.org/10.1177/ 1082013216686464
  • Bryan NS, Alexander DD, Coughlin JR, Milkowski AL, Boffetta P. 2012. Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food and Chemical Toxicology, 50(10): 3646-3665. doi: https://doi.org/10.1016/j.fct.2012.07.062 Budak A, Obuz E. 2006. Gıdalarda İyonize Radyasyon Uygulamaları. Bolu, 24-26 Mayıs 2006, Türkiye 9. Gıda Kongresi.
  • Candan T, Bağdatlı A. 2018. Et ürünlerinde nitrit/nitrat azaltılmasına yönelik doğal uygulamalar. Pamukkale University Journal of Engineering Sciences, 24(7): 1382- 1387. doi: 10.5505/pajes.2017.80269
  • Cassens RG. 1997. Composition and safety of cured meats in the USA. Food Chemistry, 59(4): 561-566. doi: https://doi.org/ 10.1016/S0308-8146(97)00007-1
  • Cemek M, Akkaya L, Birdane YO, Seyrek K, Bulut S, Konuk M. 2007. Nitrate and nitrite levels in fruity and natural mineral waters marketed in western Turkey. Journal of Food Composition and Analysis, 20(3-4): 236-240. doi: https://doi.org/10.1016/j.jfca.2006.12.003
  • Chanshotikul N, Hemung BO. 2019. Encapsulation of gac powder extract and ıts application in low-nitrite chicken sausage. International Journal of Food Engineering, 5(2): 146-151. doi: 10.18178/ijfe.5.2.146-151
  • Chatkitanan T, Harnkarnsujarit N. 2020. Development of nitrite compounded starch-based films to improve color and quality of vacuum-packaged pork. Food Packaging and Shelf Life, 25: 100521. doi: https://doi.org/10.1016/ j.fpsl.2020.100521
  • Chau TT, Ishigaki M, Kataoka T, Taketani S. 2011. Ferrochelatase catalyzes the formation of Zn-protoporphyrin of dry-cured ham via the conversion reaction from heme in meat. Journal of Agricultural and Food Chemistry, 59(22): 12238-12245. doi: https://doi.org/10.1021/jf203145p
  • Cropp MS, Dickson JS, Tarté R, Sebranek JG. 2020. Use of nitrite-embedded packaging film for color stability of alternatively-cured, fully cooked bologna. Meat and Muscle Biology, 4(1).
  • Cropp MS. 2018. The Potential Role of Nitrite-Embedded Film Technology in Extending the Color Stability and Shelf Life of Alternatively-Cured Meat Products. Msc. Thesis, Meat Science, Iowa State University, Ames, Iowa.
  • Cummins EJ, Lyng JG. 2017. Emerging Technologies in Meat Processing: Production, Processing and Technology. ISBN 9781118350775.
  • Çemtekin B, Kilinc E, Karabacak L, Dağtekin T, Tiryaki T, Soyuçok A, Şimşek A, Kılıç, B. 2019. An evaluation of guelder rose (Viburnum opulus L.) and hawthorn (Crataegus monogyna) concentrates as alternative antioxidant sources to BHT and nitrite in poultry meat model system. Scientific Papers: Series D, Animal Science-The International Session of Scientific Communications of the Faculty of Animal Science, 62(2): 217-227.
  • Da Costa RJ, Voloski FL, Mondadori RG, Duval EH, Fiorentini ÂM. 2019. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality. doi: https://doi.org/10.1155/2019/4726510
  • De Maere H, Fraeye I, De Mey E, Dewulf L, Michiels C, Paelinck H, Chollet S. 2016. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages. Meat Science, 114: 1-7. doi: https://doi.org/ 10.1016/j.meatsci.2015.11.024
  • De Martinis ECP, Alves VF, Franco BDGM. 2002. Fundamentals and perspectives for the use of bacteriocins produced by lactic acid bacteria in meat products. Food Reviews International, 18(2-3):191–208. doi: https://doi.org/10.1081/FRI-12001468 8
  • Denes FS, Manolache S. 2004. Macromolecular plasmachemistry: an emerging field of polymer science. Progress in Polymer Science, 29(8): 815-885. doi: https://doi.org/ 10.1016/j.progpolymsci.2004.05.001
  • Drabik-Markiewicz G, Dejaegher B, De Mey E, Kowalska T, Paelinck H, Vander Heyden Y. 2011. Influence of putrescine, cadaverine, spermidine or spermine on the formation of Nnitrosamine in heated cured pork meat. Food Chemistry, 126(4): 1539-1545. doi: https://doi.org/10.1016/j.foodchem. 2010.11.149
  • Du M, Hur SJ, Ahn DU. 2002. Raw-meat packaging and storage affect the color and odor of irradiated broiler breast fillets after cooking. Meat Science, 61(1): 49-54. doi: https://doi.org/10.1016/S0309-1740(01)00161-9
  • Eisinaitė V, Tamkutė L, Vinauskienė, R, Leskauskaitė D. 2020. Freeze-dried celery as an indirect source of nitrate in coldsmoked sausages: Effect on safety and color formation. LWT-Food Science and Technology, 109586. doi: https://doi.org/10.1016/j.lwt.2020.109586
  • Fang Z, Bhandari B. 2010. Encapsulation of polyphenols–a review. Trends in Food Science and Technology, 21(10): 510-523. doi: https://doi.org/10.1016/j.tifs.2010.08.003
  • Favaro L, Todorov SD. 2017. Bacteriocinogenic LAB strains for fermented meat preservation: Perspectives, challenges, and limitations. Probiotics and Antimicrobial Proteins, 9(4): 444- 458. doi: 10.1007/s12602-017-9330-6
  • Feng X, Moon SH, Lee HY, Ahn DU. 2017. Effect of irradiation on the parameters that influence quality characteristics of raw turkey breast meat. Radiation Physics and Chemistry, 130: 40- 46. doi: https://doi.org/10.1016/j.radphyschem.2016.07. 015
  • Flores M, Toldrá F. 2021. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products. Meat Science, 108272. doi: https://doi.org/10.1016/j.meatsci.2020.108272
  • Fraqueza MJ, Borges A, Patarata L. 2018. Chapter 9- Strategies to Reduce the Formation of Carcinogenic Chemicals in Dry Cured Meat Products. In: Holban AM, Grumezescu AM (editors). Food Control and Biosecurity. Handbook of Food Bioengineering, Academic Press. pp. 295-342. ISBN: 978-0- 12-811445-4
  • Fraqueza MJ, Laranjo M, Elias M, Patarata L. 2020. Microbiological hazards associated with salt and nitrite reduction in cured meat products: control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Current Opinion in Food Science. 38: 32-39. doi: https://doi.org/10.1016/j.cofs.2020.10.027.
  • Gálvez A, Abriouel H, López RL, Omar NB. 2007. Bacteriocinbased strategies for food biopreservation. International Journal of Food Microbiology, 120(1-2): 51-70. doi: https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  • Gharsallaoui A, Oulahal N, Joly C, Degraeve P. 2016. Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition, 56(8): 1262-1274. doi: https://doi.org/10.1080/10408398.2013.763765
  • Grossi AB, do Nascimento ES, Cardoso DR, Skibsted LH. 2014. Proteolysis involvement in zinc–protoporphyrin IX formation during Parma ham maturation. Food Research International, 56: 252-259. doi: https://doi.org/10.1016/j.foodres.2014.01. 007 Güleç HA. 2012. Gıda endüstrisinde ısıl olmayan plazma teknolojileri. The Journal of Food, 37(5).
  • Ha M, Dunshea FR, Warner RD. 2017. A meta-analysis of the effects of shockwave and high pressure processing on color and cook loss of fresh meat. Meat Science, 132: 107-111. doi: https://doi.org/10.1016/j.meatsci.2017.04.016
  • Hammes WP. 2012. Metabolism of nitrate in fermented meats: the characteristic feature of a specific group of fermented foods. Food Microbiology, 29(2): 151-156. doi: https://doi.org/10.1016/j.fm.2011.06.016
  • Herrmann SS, Granby K, Duedahl-Olesen L. 2015. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chemistry, 174: 516-526. doi: https://doi.org/ 10.1016/j.foodchem.2014.11.101
  • Holtzel A, Gänzle MG, Nicholson GJ, Hammes WP, Jung G. 2000. The first low molecular weight antibiotic from lactic acid bacteria: reutericyclin, a new tetramic acid. Angewandte Chemie International Edition, 39(15): 2766-2768. doi:https:// doi.org/10.1002/1521-3773(20000804)39:15<2766::AIDANIE2766> 3.0.CO;2-G
  • Honikel KO. 2008. The use and control of nitrate and nitrite for the processing of meat products. Meat Science, 78(1-2): 68- 76. doi: https://doi.org/10.1016/j.meatsci.2007.05.030
  • Hugo CJ, Hugo A. 2015. Current trends in natural preservatives for fresh sausage products. Trends in Food Science and Technology, 45(1): 12-23. doi: https://doi.org/10.1016/j.tifs. 2015.05.003
  • Hwang KE, Kim HW, Song DH, Kim YJ, Ham YK, Lee JW, Choi YS, Kim CJ. 2015. Effects of antioxidant combinations on shelf stability of irradiated chicken sausage during storage. Radiation Physics and Chemistry, 106: 315-319. doi: https://doi.org/10.1016/j.radphyschem.2014.08.014
  • Inguglia ES, Oliveira M, Burgess CM, Kerry JP, Tiwari BK. 2020. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: Influence on quality and inactivation of Listeria innocua. Innovative Food Science and Emerging Technologies, 59: 102276. doi: https://doi.org/ 10.1016/j.ifset.2019.102276
  • Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C. 2015. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46: 51-57. doi: https://doi.org/10.1016/j.fm.2014.07.009
  • Jayaweera TSP, Jayasinghe JMCS, Madushanka DNN, Yasawathie DG, Ruwandeepika HAD. 2018. Assessment of the inhibitory effect of Nisin (E234) on S. Typhimurium and B. subtilis in chicken sausage. Asian Food Science Journal, 1-11. doi: 10.9734/AFSJ/2018/41374
  • Jin SK, Choi JS, Yang HS, Park TS, Yim DG. 2018. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Science, 146: 34- 40. doi: https://doi.org/10.1016/j.meatsci.2018.07.032
  • Jo K, Lee J, Lee S, Lim Y, Choi YS, Jo C, Jung, S. 2020a. Curing of ground ham by remote infusion of atmospheric nonthermal plasma. Food Chemistry, 309: 125643. doi: https://doi.org/10.1016/j.foodchem.2019.125643
  • Jo K, Lee S, Jo C, Jeon HJ, Choe JH, Choi YS, Jung S. 2020b. Utility of winter mushroom treated by atmospheric nonthermal plasma as an alternative for synthetic nitrite and phosphate in ground ham. Meat Science, 166: 108151. doi: https://doi.org/10.1016/j.meatsci.2020.108151
  • Jo K, Lee S, Yong HI, Choi YS, Jung S. 2020c. Nitrite sources for cured meat products. LWT, 109583. doi: https://doi.org/10.1016/j.lwt.2020.109583
  • Jonas G, Csehi B, Palotas P, Toth A, Kenesei G, Pasztor-Huszar K, Friedrich L. 2017. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter. In Journal of Physics: Conference Series, 950(4). doi: 10.1088/1742-6596/950/4/042006
  • Jung S, Kim HJ, Park S, Yong HI, Choe JH, Jeon HJ, Choe W, Jo C. 2015. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsiontype sausage. Meat Science, 108: 132-137. doi: https://doi.org/10.1016/j.meatsci. 2015.06.009
  • Jung S, Lee J, Lim Y, Choe W, Yong HI, Jo C. 2017. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innovative Food Science and Emerging Technologies, 39: 113-118. doi: https://doi.org/10.1016/ j.ifset.2016.11.010
  • Karim M, Fathi M, Soleimanian-Zad S. 2021. Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needleless electrospinning: Production, characterization and their application to reduce nitrite in sausages. Journal of Food Engineering, 110140. doi: https://doi.org/10.1016/j.jfoodeng. 2020.110140
  • Karwowska M, Kononiuk A. 2020. Nitrates/nitrites in food-Risk for nitrosative stress and benefits. Antioxidants, 9(3): 241. doi: https://doi.org/10.3390/antiox9030241
  • Kawski VL, Bertol TM, Santos MJHD, Sawitzki MC, Fiorentini AM, Coldebella A, Agnes IBL. 2017. Sensory and physicochemical characteristics of salamis added with vegetable-based curing ingredients. Ciência Rural, 47. doi: https://doi.org/10.1590/0103-8478cr20151510
  • Kaynakcı E, Kılıç B. 2009. Et ürünlerinde yeni eğilimler: Daha sağlıklı ürün geliştirme çalışmaları. Akademik Gıda, 7(6): 52-59. Kızılırmak Esmer Ö, Özer Ö, Naserifar F. 2020. Taze tavuk etlerinde aktif ambalajlama uygulamaları. Etlik Veteriner Mikrobiyoloji Dergisi, 31(1): 87-92. doi: https://doi.org/ 10.35864/evmd.623386
  • Kim JS, Lee EJ, Cho EA, Kim YJ. 2013. Inactivation of Campylobacter jejuni using radio-frequency atmospheric pressure plasma on agar plates and chicken hams. Korean Journal for Food Science of Animal Resources, 33(3): 317- 324. doi:http://dx.do.org/10.5851/kosfa.2013.33.3.317
  • Kim JW, Lee HJ, Shin DJ, Baek KH, Yong HI, Jung S, Jo C. 2021. Enrichment of nitrite in onion powder using atmospheric pressure plasma and egg whites for meat curing. LWT, 135: 110050. doi: https://doi.org/10.1016/j.lwt.2020. 110050
  • Kim TK, Hwang KE, Lee MA, Paik HD, Kim YB, Choi YS. 2019a. Quality characteristics of pork loin cured with green nitrite source and some organic acids. Meat Science, 152: 141-145. doi: https://doi.org/10.1016/j.meatsci.2019.02.015
  • Kim TK, Lee MA, Sung JM, Jeon KH, Kim YB, Choi YS. 2019b. Combination effects of nitrite from fermented spinach and sodium nitrite on quality characteristics of cured pork loin. Asian-Australasian Journal of Animal Sciences, 32(10): 1603. doi: 10.5713/ajas.18.0903
  • Korel F, Orman S. 2005. Gıda ışınlaması, uy gulamaları ve tüketicinin ışınlanmış gıdaya bakış açısı. Harran Üniversitesi Ziraat Fakültesi Dergisi, 9(2):19-27.
  • Krause BL, Sebranek JG, Rust, RE, Mendonca A. 2011. Incubation of curing brines for the production of ready-to-eat, uncured, no-nitrite-or-nitrate-added, ground, cooked and sliced ham. Meat Science, 89(4): 507-513. doi: https://doi.org/10.1016/j.meatsci.2011.05.018
  • Lauková A, Czikková S, Laczková S, Turek P. 1999. Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornád salami. International Journal of Food Microbiology, 52(1-2): 115- 119. doi: https://doi.org/10.1016/S0168-1605(99)00125-7
  • Lee H, Yong HI, Kim HJ, Choe W, Yoo SJ, Jang EJ, Jo C. 2016. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Science and Biotechnology, 25: 1189-1195. doi: 10.1007/s10068-016- 0189-1
  • Lee J, Jo K, Lim Y, Jeon HJ, Choe JH, Jo C, Jung S. 2018. The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chemistry, 240: 430-436. doi: https://doi.org/10.1016/j.foodchem.2017.07.148
  • Lee J, Lee CW, Yong HI, Lee HJ, Jo C, Jung S. 2017. Use of atmospheric pressure cold plasma for meat industry. Korean Journal for Food Science of Animal Resources, 37(4): 477. doi: 10.5851/kosfa.2017.37.4.477
  • Lee SH, Choe J, Shin DJ, Yong HI, Choi Y, Yoon Y, Jo C. 2019. Combined effect of high pressure and vinegar addition on the control of Clostridium perfringens and quality in nitrite-free emulsion-type sausage. Innovative Food Science and Emerging Technologies, 52: 429-437. doi: https://doi.org/10. 1016/j.ifset.2019.02.006
  • Lin L, Hu JY, Wu Y, Chen M, Ou J, Yan WL. 2018. Assessment of the inhibitory effects of sodium nitrite, nisin, potassium sorbate, and sodium lactate on Staphylococcus aureus growth and staphylococcal enterotoxin A production in cooked pork sausage using a predictive growth model. Food Science and Human Wellness, 7(1): 83-90. doi: https://doi.org/10.1016/ j.fshw.2017.12.003
  • Luo J, Yan W, Nasiru MM, Zhuang H, Zhou G, Zhang J. 2019. Evaluation of physicochemical properties and volatile compounds of Chinese dried pork loin curing with plasmatreated water brine. Scientific Reports, 9(1): 1-11. doi: https://doi.org/10.1038/s41598-019-50351-5
  • Magnusson J, Schnüre J. 2001. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67(1): 1-5. doi: https://doi.org/10.1128/AEM.67.1.1-5.2001
  • Majou D, Christieans S. 2018. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Science, 145: 273-284. doi: https://doi.org/10.1016/j.meatsci.2018. 06.013 Misra NN, Jo C. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science and Technology, 64: 74-86. doi: https://doi.org/10. 1016/j.tifs.2017.04.005
  • Misra NN, Martynenko A, Chemat F, Paniwnyk L, Barba FJ, Jambrak AR. 2018. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Critical Reviews in Food Science and Nutrition, 58(11): 1832-1863. doi: https://doi.org/10.1080/ 10408398.2017.1287660
  • Motilva MJ, Toldrá F. 1993. Effect of curing agents and water activity on pork muscle and adipose subcutaneous tissue lipolytic activity. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 196(3): 228-232.
  • Nehra V, Kumar A, Dwivedi HK. 2008. Atmospheric nonthermal plasma sources. International Journal of Engineering, 2(1): 53-68.
  • Ning C, Li L, Fang H, Ma F, Tang Y, Zhou C. 2019. l-Lysine/larginine/ l-cysteine synergistically improves the color of cured sausage with NaNO2 by hindering myoglobin oxidation and promoting nitrosylmyoglobin formation. Food Chemistry, 284, 219-226. doi: https://doi.org/10.1016/ j.foodchem.2019.01.116
  • Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, Von Woedtke T. 2010. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7(3‐4): 250-257. doi: https://doi.org/10.1002/ppap.200900077
  • Ozaki MM, Munekata PE, Jacinto-Valderrama RA, Efraim P, Pateiro M, Lorenzo JM, Polloni MAR. 2021. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Science, 171, 108275. doi: https://doi.org/10.1016/j.meatsci.2020.108275
  • Özdemir M, Floros JD. 2004. Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3): 185-193. doi: https://doi.org/10.1080/104086904904 41578
  • Özdemir S. 2018. Fermente Sucuk Üretiminde Kereviz ve Kuşburnu Tozları Kullanılarak Sentetik Nitrit Miktarının Azaltılabilme İmkânlarının Yanıt Yüzey Yöntemi ile Modellenmesi. Yüksek Lisans Tezi, Gıda Mühendisliği Anabilim Dalı, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Türkiye.
  • Özdestan Ö, Üren Ali. 2010. Gıdalarda nitrat ve nitrit. Akademik Gıda, 8(6): 35-43.
  • Özlü H, Atasever M. 2007. Gıdalara yüksek basınç uygulaması. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 2(1): 7-27.
  • Öztan A. 2017. Et Bilimi ve Teknolojisi. Gıda Mühendisleri Odası Yayınları Kitaplar Serisi. Yayın no: 1, 11. Baskı. Ankara, Türkiye.
  • Parolari G, Benedini R, Toscani T. 2009. Color formation in nitrite‐free dried hams as related to Zn‐protoporphyrin IX and Zn‐chelatase activity. Journal of Food Science, 74(6): C413- C418. doi: https://doi.org/10.1111/j.1750-3841.2009.01193.x
  • Parthasarathy DK, Bryan NS. 2012. Sodium nitrite: The “cure” for nitric oxide insufficiency. Meat Science, 92(3): 274-279. doi: https://doi.org/10.1016/j.meatsci.2012.03.001
  • Pateiro M, Barba FJ, Domínguez R, Sant'Ana AS, Khaneghah AM, Gavahian M, Gómez B, Lorenzo JM. 2018. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International, 113: 156-166. doi: https://doi.org/10.1016/j.foodres.2018.07. 014
  • Pini F, Aquilani C, Giovannetti L, Viti C, Pugliese C. 2020. Characterization of the microbial community composition in Italian Cinta Senese sausages dry-fermented with natural extracts as alternatives to sodium nitrite. Food Microbiology, 89: 103417. doi: https://doi.org/10.1016/j.fm.2020.103417
  • Possas A, Valdramidis V, García-Gimeno RM, Pérez-Rodríguez F. 2019. High hydrostatic pressure processing of sliced fermented sausages: A quantitative exposure assessment for Listeria monocytogenes. Innovative Food Science and Emerging Technologies, 52: 406-419. doi: https://doi.org/ 10.1016/j.ifset.2019.01.017
  • Radünz M, dos Santos Hackbart HC, Camargo TM, Nunes CFP, de Barros FAP, Dal Magro J, Sanches Filho PJ, Gandra EA, Radünz AL, da Rosa Zavareze E. 2020. Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. International Journal of Food Microbiology, 108696. doi: https://doi.org/10.1016/j.ijfoodmicro.2020.1086 96
  • Raubenheimer K, Bondonno C, Blekkenhorst L, Wagner KH, Peake JM, Neubauer O. 2019. Effect of dietary nitrate on inflammation and immune function and implications for cardiovascular health. Nutrition Reviews, 77: 584–599. doi: https://doi.org/10.1093/nutrit/nuz025
  • Realini CE, Marcos B. 2014. Active and intelligent packaging systems for a modern society. Meat Science, 98(3): 404-419. doi: https://doi.org/10.1016/j.meatsci.2014.06.031
  • Riazi F, Zeynali F, Hoseini E, Behmadi H, Savadkoohi S. 2016. Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. Meat Science, 121: 350-358. doi: https://doi.org/10.1016/j.meatsci.2016.07. 008
  • Riel G, Boulaaba A, Popp J, Klein G. 2017. Effects of parsley extract powder as an alternative for the direct addition of sodium nitrite in the production of mortadella-type sausages– Impact on microbiological, physicochemical and sensory aspects. Meat Science, 131: 166-175. doi: https://doi.org/ 10.1016/j.meatsci.2017.05.007
  • Rød SK, Hansen F, Leipold F, Knøchel S. 2012. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1): 233-238. doi: https://doi.org/10.1016/j.fm.2011.12.018
  • Sallan S, Kaban G, Kaya M. 2019. Nitrosamines in sucuk: Effects of black pepper, sodium ascorbate and cooking level. Food Chemistry, 288: 341-346. doi: https://doi.org/10.1016/ j.foodchem.2019.02.129
  • Santarelli RL, Pierre F, Corpet DE. 2008. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutrition and Cancer, 60(2): 131-144. doi: 10.1080/01635580701684872
  • Sebranek JG, Bacus JN. 2007. Cured meat products without direct addition of nitrate or nitrite: what are the issues? Meat Science, 77(1): 136-147. doi: https://doi.org/10.1016/j. meatsci.2007.03.025
  • Silva DR, Haddad GB, de Moura AP, de Souza PM, Ramos AL, Hopkins DL, Ramos EM. 2021. Safe cured meat using gamma radiation: Effects on spores of Clostridium sporogenes and technological and sensorial characteristics of low nitrite cooked ham. LWT, 137: 110392. doi: https://doi.org/10.1016/j.lwt.2020.110392
  • Sindelar JJ, Milkowski AL. 2011. Sodium nitrite in processed meat and poultry meats: a review of curing and examining the risk/benefit of its use. American Meat Science Association White Paper Series, 3: 1-14.
  • Slima SB, Ktari N, Trabelsi I, Triki M, Feki-Tounsi M, Moussa H, Makni I, Herrero A, Jimenez-Colmenero F, Perez CRC, Salah RB. 2017. Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. LWT, 86: 219-226. doi: https://doi.org/ 10.1016/j.lwt.2017.07.058
  • Šojić B, Pavlić B, Ikonić P, Tomović V, Ikonić B, Zeković Z, Kocić-Tanackov S, Jokanović M, Škaljac S, Ivić M. 2019. Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Science, 157: 107879. doi: https://doi.org/10.1016/j.meatsci.2019.107879
  • Šojić B, Pavlić B, Tomović V, Kocić-Tanackov S, Đurović S, Zeković Z, Belović M, Torbica A, Jokanović M, Urumović N, Vujadinović D, Ivić M, Škaljac S. 2020. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chemistry, 127202. doi: https://doi.org/10.1016/j.foodchem. 2020.127202
  • Soyuçok A, Kılıç B, Kılıç GB. 2019. Et Ürünlerinde Enkapsülasyon Teknolojisinin Kullanımı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1): 102-110. doi: https://doi.org/10.29048/makufebed.530102 Sucu Ç, Yıldız Turp G. 2018. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science, 140: 158-166. doi: https://doi.org/10.1016/j.meatsci.2018.03.012
  • Takwa S, Caleja C, Barreira JC, Soković M, Achour L, Barros L, Ferreira IC. 2018. Arbutus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food industry: A case study using loaf bread. LWT, 88: 47-55. doi: https://doi.org/10.1016/j.lwt.2017.09.041
  • Terns MJ, Milkowski AL, Claus JR, Sindelar JJ. 2011. Investigating the effect of incubation time and starter culture addition level on quality attributes of indirectly cured, emulsified cooked sausages. Meat Science, 88(3): 454– 61. doi: https://doi.org/10.1016/j.meatsci.2011.01.026
  • TGK, 2013. Türk Gıda Kodeksi. Gıda katkı maddeleri tebliği. T.C. Resmi Gazete Sayı: 28693. Şu adresten ulaşılabilir: https://www.resmigazete.gov.tr/eskiler/2013/06/20130630- 4.htm [20 Temmuz 2020'de erişildi]
  • TGK, 2019. Türk Gıda Kodeksi. Gıda Işınlama Yönetmeliği. T.C. Resmi Gazete. Sayı: 30907. Şu adresten ulaşılabilir: https://www.resmigazete.gov.tr/eskiler/2019/10/20191003- 1.htm [30 Temmuz 2020’de erişildi]
  • Thippareddi H, Juneja VK, Phebus RK, Marsden JL, Kastner CL. 2003. Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork, Journal of Food Protection, 66(3):376– 381 pp. doi: https://doi.org/10.4315/0362-028X-66.3.376
  • Toldrá F, Cerveró MC, Part C.1993. Porcine aminopeptidase activity as affected by curing agents. Journal of Food Science, 58(4): 724-726. doi: https://doi.org/10.1111/j.1365- 2621.1993.tb09344.x
  • Toldrá F. 2017. The Storage and Preservation of Meat: III—Meat Processing. In Lawrie´ s Meat Science. Woodhead Publishing Series in Food Science, Technology and Nutrition. pp. 265- 296. doi: https://doi.org/10.1016/B978-0-08-100694- 8.00009-1
  • Vafania B, Fathi M, Soleimanian-Zad S. 2019. Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food and Bioproducts Processing, 116: 240-248. doi: https://doi.org/10.1016/j.fbp.2019.06.001
  • Vasavada MN, Cornforth DP. 2005. Evaluation of milk mineral antioxidant activity in beef meatballs and nitrite‐cured sausage. Journal of Food Science, 70(4): C250-C253. doi: https://doi.org/10.1111/j.1365-2621.2005.tb07168.x
  • Vasilaki A, Hatzikamari M, Stagkos-Georgiadis A, Goula AM, Mourtzinos I. 2019. A natural approach in food preservation: Propolis extract as sorbate alternative in non-carbonated beverage. Food Chemistry, 298: 125080. doi: https://doi.org/10.1016/j.foodchem.2019.125080
  • Visy A, Hidas K, Csonka J, Friedrich L, Jónás G. 2019. Combined effect of various nitrite concentration and high pressure treatment on functional characteristics of raw meat batter. Journal of Hygienic Engineering and Design, 26: 47- 51.
  • Wakamatsu J, Nishimura T, Hattori A. 2004. A Zn–porphyrin complex contributes to bright red color in Parma ham. Meat Science, 67(1): 95-100. doi: https://doi.org/10.1016/ j.meatsci.2003.09.012
  • Wakamatsu JI, Kawazoe H, Ohya M, Hayakawa T, Kumura, H. 2020. Improving the color of meat products without adding nitrite/nitrate using high zinc protoporphyrin IX-forming microorganisms. Meat Science, 161: 107989. doi: https://doi.org/10.1016/j.meatsci.2019.107989
  • Yıldız Turp G, Sucu Ç, Nalbant H, Akbulut M. 2018. Characteristics of Nitrite Reduced Fermented Sausages Including Spinach Powder with Galangal and Clove Extracts. International Eurasian Conference on Science, Engineering and Technology, Ankara, Türkiye.
  • Yıldız Turp G, Sucu Ç. 2016. Et ürünlerinde nitrat ve nitrit kullanımına potansiyel alternatif yöntemler. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 12(2). doi: https://doi.org/10.18466/cbujos.70961
  • Yıldız Turp G, Sucu Ç. 2018. The Assessment of Celery Powder as Nitrite Alternative in Sucuk (Turkish Dry Fermented Sausage), Van, Turkey, 9-12 May 2018.
  • Yong HI, Kim HJ, Park S, Kim K, Choe W, Yoo SJ, Jo C. 2015. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Research International, 69: 57-63. doi: https://doi.org/10.1016/j.foodres.2014.12.008
  • Yong HI, Lee SH, Kim SY, Park S, Park J, Choe W, Jo C. 2019. Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innovative Food Science and Emerging Technologies, 53: 78-84. doi: https://doi.org/10.1016/j.ifset.2017.09.005
  • Yüksel ÇY, Karagözlü N. 2017. Soğuk atmosferik plazma teknolojisi ve gıdalarda kullanımı. Journal of Adnan Menderes University, Agricultural Faculty, 14(2). doi: https://doi.org/10.25308/aduziraat.332684
  • Zhao L, Zhang Y, Pan Z, Venkitasamy C, Zhang L, Xiong W, Guo S, Xia H, Liu W. 2018. Effect of electron beam irradiation on quality and protein nutrition values of spicy yak jerky. LWT, 87: 1-7. doi: https://doi.org/10.1016/j.lwt. 2017.08.062
  • Zhou GH, Xu XL, Liu Y. 2010. Preservation technologies for fresh meat–A review. Meat Science, 86(1): 119-128. doi: https://doi.org/10.1016/j.meatsci.2010.04.033
  • Zhou Y, Wang Q, Wang S. 2020. Effects of rosemary extract, grape seed extract and green tea polyphenol on the formation of N‐nitrosamines and quality of western‐style smoked sausage. Journal of Food Processing and Preservation, 44(6): 14459. doi: https://doi.org/10.1111/jfpp.14459
  • Zhu Y, Wang P, Guo L, Wang J, Han R, Sun J, Yang Q. 2019. Effects of partial replacement of sodium nitrite with Lactobacillus pentosus inoculation on quality of fermented sausages. Journal of Food Processing and Preservation, 43(5): 13932. doi: https://doi.org/10.1111/jfpp.13932
  • Zuidam NJ, Nedovic´ VA. 2010. Encapsulation Technologies for Active Food İngredients and Food Processing. Springer. ISBN 978-1-4419-1007-3.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)