Endüstriyel Sızıntı Suyundan Pb(II) Giderimi İçin Genleştirilmiş Perlit Kullanımı: Kinetik Çalışmalar

Bu çalışmada, genleştirilmiş perlit kullanılarak endüstriyel sızıntı suyundan adsorpsiyon yöntemi ile Pb(II) gidermi araştırılmıştır. Pb(II) gideriminde pH, temas süresi ve adsorbent miktarının etkisi değerlendirilmiştir. Adsorpsiyon mekanizmasını değerlendirmek için Elovich modeli, partikül içi difüzyon (Weber-Morris) ve yalancı ikinci derece reaksiyon kinetiği modeli olmak üzere üç kinetik model test edilmiştir. Sonuç olarak, genleştirilmiş perlit üzerine Pb(II) adsorpsiyonu için en iyi uyum gösteren kinetik model olarak yalancı ikinci derece reaksiyon kinetiği modeli tanımlanmıştır (R2>0.99). Kimyasal adsorpsiyon, endüstriyel sızıntı suyundan kütle transferi yerine adsorpsiyon işleminin belirleyici aşamasıdır. Partikül içi difüzyon modelinden elde edilen verilere göre, adsorpsiyon birden fazla adımdan oluşmaktadır. Son kısımdaki adsorpsiyonun partiküller arası difüzyon olduğu gerçeğine dayanırken birinci bölümdeki adsorpsiyon film difüzyonudur. Pb(II)’nin genleştirilmiş perlit üzerindeki adsorpsiyonunda film difüzyonu ve partikül içi difüzyon işlemleri anlamlıdır. Bu çalışmadan elde edilen sonuçlar, genleştirilmiş perlitin endüstriyel sızıntı suyundan adsorpsiyon yoluyla Pb(II)’nin giderilmesi için etkili bir alternatif adsorbent olduğunu göstermektedir.

The Use of Expanded Perlite for Pb(II) removal from Industrial Leachate: Kinetic Studies

In this study, the removal efficiency of Pb(II) from industrial leachate was investigated by using expanded perlite by adsorption. The effects of pH, contact time, and adsorbent dosage were examined on the Pb(II) removal. The adsorption kinetics were tested to understand the adsorption mechanism using three kinetic models, i.e., Elovich, intraparticle diffusion, and the pseudo second order reaction kinetic models. As the result, the best conformity kinetic model for Pb(II) adsorption on expanded perlite was described as the pseudo second-order (R2>0.99). It is indicated that chemisorption is the determining step of adsorption process rather than mass transfer from industrial leachate. According to the data obtained from intraparticle diffusion model, the adsorption is composed of more than one step. This can be attributed to the fact that the adsorption in the final portion was the intraparticle diffusion while the adsorption in the first portion was the film diffusion. Both film diffusion and intraparticle diffusion processes in the adsorption of Pb(II) on expanded perlite are significant. This study indicated that expanded perlite was an influential alternative adsorbent for the removal of Pb(II) by adsorption from industrial leachate.

___

  • Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Chii YY, Siddique BM, 2009. Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood, Desalination, 247: 636-646
  • Akpomie KG, Dawodu FA, 2014. Efficient abstraction of nickel (II) and manganese (II) ions from solution onto an alkalinemodified montmorillonite, Journal of Taibah University for Science, 8(4): 343-356
  • Allen SJ, Mckay G, Khader KYH. 1989, Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat’, Environmental Pollution, 56(1): 39-50
  • APHA, AWWA, WEF. 1985. Standard Methods for the Examination of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater (18th ed,), Washington, DC
  • Aydın Temel F, Kuleyin A. 2016, Ammonium removal from landfill leachate using natural zeolite: kinetic, equilibrium, and thermodynamic studies, Desalination and Water Treatment, 57: 23873-23892
  • Aydın Temel F. 2017. Kinetics and thermodynamics of the Ni (II) ions sorption from industrial wastewater by Gyttja, International Journal of Exergy, 23(4): 279-297
  • Boujelben N, Bouzid J, Elouear Z. 2009, Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems, Journal of Hazardous Materials, 163(1): 376-382
  • Deng Y, Gao Z, Liu B, Hu X, Wei Z, Sun C. 2013. Selective removal of lead from aqueous solutions by ethylenediaminemodified attapulgite, Chem, Eng, J, 223: 91-98
  • EPA 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods’, EPA publication SW‐846,
  • Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015)
  • Fan QH, Li Z, Zhao HG, Jia ZH, Xu JZ, Wu WS. 2009. Sorption of Pb (II) on palygorskite from aqueous solution: effects of pH, ionic strenght and temperature, Appl, Clay Sci, 45: 111-116
  • Gupta VK, Agarwal S, Saleh TA. 2011. Synthesis and characterization of alumiba-coated carbon nanotubes and their application for lead removal, Journal of Hazardous Material, 185: 17-23
  • Ho YS, McKay G. 1999. Pseudo-second order model for sorption processes, Process Biochemistry, 34: 451–465
  • Karatas M. 2012. Removal of Pb (II) from water by natural zeolitic tuff: kinetics and thermodynamics, J, Hazard, Mater, 199: 383-389
  • Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S. 2011. Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design, Chemical Engineering Journal, 167: 122–131
  • Lagergren S. 1898. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Sevenska Vetenskapasakademiens, Handlingar 24 (7): 1–3
  • Liao P, Yuan S, Zhang W, Tong M, Wang K. 2012. Mechanistic aspects of nitrogen heterocyclic compound adsorption on bamboo charcoal, J Colloid Interface Sci, 382: 74–81
  • Malamis S, Katsou E. 2013. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms, Journal of Hazardous Materials, 252–253: 428- 461
  • Mondal MK. 2009. Removal of Pb (II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column, J, Environ, Manage, 90: 3266-3271
  • Naiya TK, Bhattacharya AK, Mandal S, Das SK. 2009. The sorption of lead (II) ions on rice husk ash, J, Hazard, Mater, 163: 1254-1264
  • Olgun A, Atar N. 2012, Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity, Journal of Industrial and Engineering Chemistry 18(5): 1751-1757,
  • Ozay O, Ekici S, Baran Y, Aktas N, Sahiner, N. 2009. Removal of toxic metal ions with magnetic hydrogels, Water Res, 43: 4403-4411
  • Paliulis D. 2016. Removal of formaldehyde from synthetic wastewater using natural and modified zeolites, Polish Journal of Environmental Studies, 25(1): 251-257
  • Ponnusami V, Krithika V, Madhuram R, Srivastava SN. 2007. Biosorption of reactive dye using acid-treated rice husk: Factorial design analysis, Journal of Hazardous Materials, 142(1–2): 397–403
  • Ramesh ST, Rameshbabu N, Gandhimathi R, Srikanth Kumar M, Nidheesh PV. 2013. Adsorptive removal of Pb(II) from aqueous solution using nano-sized hydroxyapatite, Appl Water Science, 3: 105-113
  • Saadat S, Karimi-Jashni A. 2011. Optimization of Pb(II) adsorption onto modified walnut shells using factorial design and simplex methodologies, Chemical Engineering Journal, 173(3): 743–749
  • Salman T, Temel Aydın F, Turan NG, Ardali Y. 2016. Adsorption of lead (II) ions onto diatomite from aqueous solutions: Mechanism, isotherm and kinetic studies, Global Nest Journal, 18(1): 1–10
  • Singha B, Das SK. 2011. Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies, Colloids and Surfaces: B, Biointerfaces, 84(1): 221-232
  • Turan NG, Ozgonenel O. 2013. Optimizing copper ions removal from industrial leachate by explored vermiculite-A comparative analysis’, Journal of the Taiwan Institute of Chemical Engineers, 44: 895-903
  • Wen D, Ho YS, Tang X. 2006. Comparative sorption kinetic studies of ammonium onto zeolite, Journal of Hazardous Materials, B133: 252-256
  • Xu D, Tan XL, Chen CL, Wang XK. 2008. Adsorption of Pb (II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strenght, foreign ions and temperature Appl, Clay Sci, 41: 37-46