Camel milk: As a New Protein Source to Use for Yoghurt Production

The main purpose of this study was to investigate the possibilities of technological production of camel milk yoghurt. First of all, denaturation of antimicrobial substances in camel milk by heat treatment and their effects on pH decrease and on the viscosity were analysed. Although the pH decrease was present, the viscosity of camel milk didn’t change. In the study, two different heat treatments (20 min at 90°C and 20 min at 95°C) were applied to camel milk and pH and SH (Soxhelet Henkel) values were determined until pH reached 4.7 during fermentation. After culture addition the pH drop was at 90°C for 20 minutes heat-treated camel milk slower than the camel milk heated at 95°C for 20 minutes. Similarly, the increase in SH in the cultured milk treated at 90°C for 20 minutes was slower than the increase in SH in the cultured milk treated at 95°C for 20 minutes. In the next study, viscosity and pH changes in yoghurt produced from cow and camel milk were compared. For this purpose, both milks were heat treated at 80°C for 20 minutes. After 180 minutes in cow’s milk, the viscosity was 9891 mPa.s, and after 210 minutes it reached 25237 mPa.s. In contrast, the viscosity in cultured camel milk was determined as 1210 mPa.s after 90 minutes, while the viscosity remained around 1216 mPa.s after 380 minutes. In the next study, for the production of yogurt from cow milk and camel milk were performed. Both milks were heat treated at 80°C for 20 minutes and changes in viscosity and drop of pH during fermentation were analysed. After the 180 minutes of fermentation in cow’s milk the viscosity came to 9891 mPa.s, after 210 minutes it was 25237 mPa.s. In contrast, after 90 minutes in the cultured camel milk, the viscosity was 1210 mPa.s, while after 380 minutes the viscosity reached to 1216 mPa.s. E. coli, L. bulgaricus and Listeria innocua were used to determine the antimicrobial effect of raw camel milk, cow milk, heat treated camel and cow milk camel colostrum. While camel milk and colostrum had inhibitory effect on E. coli, L. bulgaricus, Listeria innocua was not inhibited

Deve Sütü: Yoğurt Üretiminde Kullanılacak Yeni Bir Protein Kaynağı

Bu çalışmada temel amaç deve sütü yoğurdunun teknolojik olarak üretilebilirliğinin araştırılmasıdır. Öncelikle, ısıl işlemle deve sütündeki antimikrobiyal maddelerin denatürasyonu ve pH düşüşü ile viskozite üzerindeki etkileri analiz edilmiştir. pH’da azalma meydana gelmesine rağmen, deve sütünün viskozitesi değişmemiştir. İlk çalışmada deve sütüne 2 farklı ısıl işlem (90°C de 20 dk. ve 95°C de 20 dk.) uygulanmış ve fermentasyon süresince pH 4,7’ ye ulaşana kadar pH ve SH değerleri saptanmıştır. Kültür ilavesinden sonra 90°C de 20 dakika ısıl işleme tabi tutulmuş sütte pH düşüşü 95°C de 20 dk ısıtılan sütteki pH düşüşüne göre daha yavaş gerçekleşmiştir. Benzer şekilde 90°C de 20 dakika ısıl işlem uygulanmış kültürlenmiş sütte SH artışı 95°C de 20 dk ısıtılmış sütteki SH artışına göre daha yavaş gerçekleşmiştir. Bir sonraki çalışmada inek ve deve sütünden yoğurt üretiminde viskozite ve pH değişimleri karşılaştırılmıştır. Bunun için her iki süte 80°C’de 20 dakika ısıl işlem uygulanmıştır. İnek sütünde 180 dakika sonra viskozite 9891 mPa.s iken 210 dakika sonunda 25237 mPa.s’ye ulaşmıştır. Buna karşın kültürlenmiş deve sütünde 90 dakika sonra viskozite 1210 mPa.s olarak saptanırken 380 dakika sonra viskozite 1216 mPa.s civarında kalmıştır. Gerek deve sütünün gerekse, deve kolostrumunun antimikrobiyal etkisini saptamak için E. coli, L. bulgaricus ve Listeria innocua kullanılmıştır. Deve sütü ve kolostrumunun E. coli, L. bulgaricus üzerine inhibisyon etkisi görülürken, Listeria innocua’yı inhibe etmediği saptanmıştır.

___

Abdel-Salam AM, Al-Damegh MA. 2018. Antidiabetic and Immunoprophylactic Effects of Camel Milk Filtrate and Bitter Gourd (Momordica charantia) Juice Against Alloxaninduced Oxidative Stress and Diabetes in Rats. International Journal of Pharmacology, 14 (3): 397-406

Abusheliabi A, Al-Holy MA, Al-Rumaithi H, Al-Khaldi S, AlNabulsi AA, Holley RA, Ayyas M. 2017. Growth Inhibition of Foodborne Pathogens in Camel Milk: Staphylococcus aureus, Listeria monocytogenes, Salmonella spp. and E. coli O157:H7. Czech Journal of Food Sciences, 35 (4): 311–320

Abu-Tarboush HM. 1996. Comparison of associative growth and proteolytic activity of yogurt starters in whole milk from camels and cows. Journal of Dairy Science, 79 (3): 366-371

Al Haj OA, Al Kanhal HA. 2010. Compositional, technological and nutritional aspects of dromedary camel milk. International Dairy Journal, 20 (12): 811-821

Al-Fakharany EM, Abu-Serie MM, Litus EA. 2018. The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. Protein Journal, 37 (3): 203-215

Al-Haj OA, Metwalli AL, Ismail EA, Ali HS, Al-Khalifa AS, Kanekanian AD. 2018. Angiotensin converting enzymeinhibitory activity and antimicrobial effect of fermented camel milk (Camelus dromedarius).

International Journal of Dairy Technology, 71 (1): 27-35 Anonim. 1994 Çiğ Süt Standardı. TSE 1018, Necatibey Cad. No. 112, Bakanlıklar, Ankara

Ayyash M, Al-Nuaimi AK, Al-Mahadin S, Liu SQ. 2018. In vitro investigation of anticancer and ACE-inhibiting activity, aamylase and a-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk, Food Chemistry, 239: 588-592

Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2): 71-79

Beckman RA, Weiner LM, Davis HM. 2007. Antibody constructs in cancer therapy - Protein engineering strategies to improve exposure in solid tumors. Cancer, 109 (2): 170-179

Benkerroum N, Mekkaoui M, Bennani N, Hidane K. 2004. Antimicrobial activity of camel’s milk against pathogenic strains of Escherichia coli and Listeria monocytogenes. International Journal of Dairy Technology, 57 (1): 39-43

Benkerroum N. 2008. Antimicrobial activity of lysozyme with special relevance to milk. African Journal of Biotechnology, 7 (25): 4856-4867

Bornaz S, Sahli A, Attalah A, Attia H. 2009. Physico-chemical characteristics and renneting properties of camels’ milk: A comparison with goats’, ewes’, and cows’ milks. International Journal of Dairy Technology, 62 (4): 505-513

Conesa C, Sanchez L, Rota C, Pérez MD, Calvo MS, Farnaud S, Ewans RW. 2008. Isolation of lactoferrin from milk of different species: Calorimetric and antimicrobial studies. Comparative Biochemistry Physiology Part B, 150 (1): 131-139

El-Agamy EI. 2000. Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: a comparison with cows’and buffalo milk proteins. Food Chemistry, 68 (2): 227-232

El-Zeini H. 2006. Microstructure rheological and geometrical properties of fat globules of milk from different animal species. Pol J Food Nutr Science, 15/56 (2):147–153

Fiocchi A, Schünemann HJ, Brozek J. 2010. Diagnosis and rationale for action against cow’s milk allergy (DRACMA):a summary report, American Academy of Allergy, Asthma &Immunology, 126 (6):1119-1128

Gorban AMS, Izzeldin OM. 1999. Study on cholesteryl ester fatty acids in camel and cow milk lipid. International Journal of Food Science and Technology, 34 (3): 229-234

Habib HM, Ibrahim WH, Schneider-Stock R, Hassan HM. 2013. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chemistry, 141 (1), 148–152

Hara K, Ikeda M, Saito S, Matsumoto S, Numata K, Kato N, Tan K, Sekihara H. 2002. Lactoferrin inhibits hepatitis B virus infection in cultured human, Hepatology Research, 24 (3): 228-235

Hashim IB, Khalil AH, Habib H. 2009. Quality and acceptability of a settype yogurt made from camel milk. Journal of Dairy Science, 92 (3): 857-862

Jumah RY, Shaker RR, Abu-Jdayil B. 2001. Effect of milk source on the rheological properties of yogurt during the gelation process. International Journal of Dairy Technology, 54 (3): 89-93

Kamal AM, Salama OA, El-Saied KM. 2007. Changes in amino acid profile of camel milk protein during the early lactation. International Dairy Journal, 2 (3), 226-234.

Karray N, Lopez C, Ollivon M, Attia H, 2005. La matie` re grasse du lait de dromadaire: composition, microstructure et polymorphisme. Une revue OCL, 12 (5-6): 439–446

Konuspayeva G, Faye B, Loiseau G. 2007. Lactoferrin and immunoglobulin contents in camel’s milk (Camelus bactrianus, Camelus dromedarius, and hybrids) from Kazakhstan, Journal of Dairy Science, 90 (1): 38-46

Konuspayeva G, Faye B, Louseau G. 2009. The composition of camel milk: A meta-analysis of the literature data. Journal of Food Composition and Analysis, 22 (2): 95–101

Konuspayeva G, Lemarie E, Faye B, Loiseau G, Montet D, 2008. Fatty acid and cholesterol composition of camel’s (Camelus bactrianus, Camelus dromedarius and hybrids) milk in Kazakhstan. Dairy Science and Technology, 88 (3): 327–340

Korish AA. 2014. The Antidiabetic Action of Camel Milk in Experimental Type 2 Diabetes Mellitus: An Overview on the Changes in Incretin Hormones, Insulin Resistance, and Inflammatory Cytokine, Hormonone and Metabolic Research, 46(06): 404-411

Kumar D, Kumar CM, Singh R, Mehta N, Kumar P. 2016. Antioxidant and antimicrobial activity of camel milk caseinhydrolysates and its fractions. Small Ruminant Research, 139 (2): 20–25

Magjeed MA. 2005. Corrective effect of milk camel on some cancer biomarkers in blood of rats intoxicated with Aflatoxin B1. Journal of Saudi Chemical Society, 9(2): 253-263

Metin M, Öztürk GF. 2010. Süt ve mamülleri analiz yöntemleri:(duyusal, fiziksel ve kimyasal analizler). Ege Üniversitesi.

Mudgil P, Kamal H, Yuen GC, Maqsood S. 2018. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chemistry, 259 (1): 46-54

Öner Z, Aloğlu HŞ. 2018. Süt ve Süt Ürünleri Analiz Yöntemleri, Sidaş Medya

Salami M, Moosavi-Movahedi AA, Ehsani MR. 2010. Improvement of the Antimicrobial and Antioxidant Activities of Camel and

Bovine Whey Proteins by Limited Proteolysis. Journal of Agricultural and Food Chemistry, 58 (6): 3297-3302

Salami M, Yousefi R, Ehsani MZ, Dalgalarrado M, Chobert JM,Haertle T, Razavi SH, Saboury AA, Niasari-Nasiaji A, Moosavi-Movahadi AA. 2008. Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal, 18 (12): 1097–1102

Saygılı D, Karagözlü C. 2017. Deve Sütü ve Diyabet Tedavisindeki Önemi. Akademik Gıda, 15(2): 204-210

Shuiep ES, El Zubeir IEM, El Owni OAO, Musa HH. 2008. Influence of season and management on composition of raw camel (Camelus dromedarius) milk in Khartoum state, Sudan.Tropical and Subtropical Agroecosystems, 8 (1): 101-106.

Tamime AY, Robinson, RK. 2000. Yoghurt Science and Technology, 2nd edition, Woodhead Publishing Limited, Cornwall, England TS EN ISO 8968-1. 2014. Süt ve Süt Ürünleri- Azot içeriği tayiniBölüm 1: Kjeldahl prensibi ve ham protein hesaplanması.

Ueda T, Sakamaki K, Kuroki T, Yano I, Nagata S. 1997. Molecular Cloning and Characterization of the Chromosomal Gene for Human Lactoperoxidase. European Journal of Biochemistry, 243: 32-41.

Uversky VN, El-Fakharany EM, Abu-Serie MM, Almehdar HA, Redwan EM. 2017. Divergent Anticancer Activity of Free and Formulated Camel Milk α-Lactalbumin. Cancer Investigation, 3 (9): 610-623

Verraes C, Claeys W, Cardoen S, Daube G, De Zutter L, Imberechts H, Dierick, K, Herman L. 2014. A review of the microbiological hazards of raw milk from animal species other than cows. International Dairy Journal, 39 (1): 121-130

Yagil R. 2000. Lactation in the desert camel (Camelus dromedarius). In: Selected topics on camelids, Eds. Gahlot F.K., J. Singh. The camel publishers, Bikaner, India, pp. 61-73
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Romanov Kuzularının Vücut Özelliklerinin Tanımlanmasında Doğrusal ve Doğrusal Olmayan Modellerin Karşılaştırılması

Yalçın TAHTALI, Ahmet Tahsin YALDIZBAŞ

Effects of Dietary Rosemary Essential Oil on Growth Performance, Carcass Traits and Some Hematological Values of Chukar Partridge

Behlül SEVİM, Erinç GÜMÜŞ, Halil HARMAN, TUGAY AYAŞAN, Eyüp BAŞER, Yasin ALTAY, Kürşat AKBULUT

Radyal Tabanlı Yapay Sinir Ağlarının Kurutma Kinetiğinin Modellenmesinde Kullanımı

Adil Koray YILDIZ, Hakan POLATCI, Muhammed TAŞOVA

The Use of Radial-Based Artificial Neural Networks in Modelling Drying Kinetics

ADİL KORAY YILDIZ, Muhammed TAŞOVA, Hakan POLATCI

Çeşitli Biyoaktivatör Uygulamalarının Çarkıfelek ve Guava Bitkilerinin Fidan Gelişimi Üzerine Etkileri

Sevinç ŞENER, Canan Nilay DURAN, Gizem DEMİRKAPLAN

Gen Dizilerinde (cDNA Mikroarray) Temel Bileşenler Analizinin Uygulanması

Yalçın Tahtalı, Zeynel Cebeci

Determination of Antifungal Effects of Some Berry Fruits Ethanol Extracts by Disc Diffusion Method

Oktay TOMAR, Gökhan AKARCA, Elif BAŞPINAR

Application of Modern Techniques in Animal Production Sector for Human and Animal Welfare

Wajid ALİ, Moazam ALİ, Muhammad AHMAD, Sadia DİLAWAR, Asia FİRDOUS, Anam AFZAL

Hasat Sonrası Bazı Uygulamaların Autumn Giant Erik Çeşidinin Muhafaza Performansı Üzerine Etkisi

Erdinç BAL, Feyza Nur DURSUN

The Effect of Some Postharvest Applications on Storage Performance of Autumn Giant Plum Cultivar

Feyza Nur DURSUN, Erdinç BAL