Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar

Bu derleme, bitkilerin kuraklık stresine karşı gösterdikleri karmaşık fizyolojik ve metabolik tepki mekanizmaları hakkında bilinenleri özetlemek, en etkin yaklaşımları vurgulamak ve tarımsal anlamda önemi olan bitkilerin kuraklık toleransını arttırmayı hedefleyen çalışmalarda kullanılabilecek yeni yaklaşımları değerlendirmek amacını taşımaktadır. Kuraklık, tarımsal üretimde ciddi verim kayıplarına neden olan etmenlerin başında gelmektedir. Küresel ısınmaya bağlı olarak beklenen şiddetli kuraklık olayları, tarımsal anlamda kullanılan bitkilerin kuraklık toleranslarının arttırılması yolunda ciddi adımların acil olarak atılmasının gerekliliğini bir kez daha gözler önüne koymaktadır. Hareket edemeyen canlılar olan bitkiler, kuraklık, sıcaklık, tuzluluk ve aşırı yağış gibi abiyotik stres koşullarına büyüme ve gelişmeleri en az zarar görecek şekilde fizyolojik ve metabolik değişikliklerle tepki vermektedirler. Ancak, abiyotik stres koşullarında meydana gelen bu değişiklikler, karmaşıklıklarından dolayı uzun yıllardır üzerinde çalışılıyor olmasına rağmen halen tam olarak anlaşılamamıştır. Bu da, bitki kuraklık stres tepkisini anlamak ve tarımsal anlamda önemi olan bitkilerin stres toleransını artırmak amaçlı çalışmalarda yeni yaklaşımlar kullanılmasını gerektirmektedir. Karşılaştırmalı genomik ve tranksriptomik çalışmaların yapılması, bitki kuraklık stres tepkisinde miRNA’ların oynadıkları rollerin anlaşılması, toleransları daha yüksek olan yabani genotiplerin mekanizmalarının aydınlatılması ve bitki stres adaptasyonunda epigenetiğin rolünün ortaya konulması öncelikler arasında yer almaktadır. Bu bilgilerin klasik ıslah çalışmalarıyla birleştirilmesi, doğada gerçekleşen çoklu abiyotik stres koşullarına dayanıklı bitkilerin geliştirilebilmesi için en önemli aşamadır.

Literature review and new approaches on plant drought stress response

This review aims to summarize the current knowledge on complex physiological and metabolic changes in drought stress response, to point out the most effective approaches to understand stress mechanism and to evaluate new approaches to increase drought stress tolerance of agriculturally important plant species. Drought is the main reason for yield loss in agricultural production. Global warming will cause more serious drought episodes in close future; therefore, it is more urgent to make progress in increasing the drought stress tolerance of agriculturally important plants. Being immobile, plants can alter their physiology and metabolism to get minimum damage from abiotic stress conditions including drought, heat, salt and flooding. Although there is an ongoing research on understanding the plant drought stress response for years, there is still a limited knowledge on these alterations due to their complexity. Therefore, new approaches should be used in research aiming to understand plant stress response and to increase drought stress tolerance of agriculturally important plants. Comparative genomics and transcriptomics studies, understanding the roles of miRNAs in plant drought stress response, figuring out the stress response mechanisms of wild genotypes and comprehending the role of epigenetics in plant stress adaptation are some of the main topics that can be utilized. Integration of this knowledge with classical breeding is the most important point to develop plants with resistance to multiple stresses in their environment.

___

  • Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F. 2013. Genotypic differences in physiological characteristices in the tolerance to drought and salinity combined stress between Tibetian wild and cultivated barley. Plant Physiol. Biochem., 63: 49-60.
  • Akimoto K, Katakami H, Kim H, Ogawa E, Sano CM, Wada Y, Sano H. 2007. Epigenetic inheritance in rice plants. Annals of Bot., 110: 1-13.
  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stres. Afr. J. Agric. Res., 6: 2026-2032.
  • Anonim, 2014a. T.C. Orman ve Su İşleri Bakanlığı, Meteoroloji Genel Müdürlüğü (http://www.mgm.gov.tr)
  • Anonim, 2014b. T.C. Orman ve Su İşleri Bakanlığı, Devlet Su İşleri Genel Müdürlüğü (http://www.dsi.gov.tr)
  • Aprile A, Havlicova L, Panna R, Mare C, Borrelli GM, Marone D, Perrotta C, Rampino P, De Bellis L, Curn V, Mastrangelo AM, Rizza F, Cattivelli L. 2013. Different stress responseive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genom., 14: 821.
  • Bartels D, Sunkar R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci., 24: 23-58.
  • Bhargava S, Sawant K. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed., 132: 21-32.
  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins FJ, Kovalchuk I. 2010.
  • Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLOS One, 5: e9514.
  • Boyko A, Kovalchuk I. 2011. Genome instability and epigenetic modification – heritable responses to environmental stress? Curr. Opin. in Plant Biol., 14: 260-266.
  • Cabello JV, Lodeyro AF, Zurbriggen M. 2014. Novel perspectives for the engineering of abiotic sress tolerance in plants. Curr. Opin. Biotech., 26: 62-70.
  • Chinnusamy V, Gong Z, Zhu J-K. 2008. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integ Plant Biol., 50: 1187-1195.
  • Cominelli E, Conti L, Tonelli C, Galbiati M. 2013. Challenges and perspectives to improve crop drought and salinity tolerance. New Biotech., 30: 355-361.
  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol., 11: 163.
  • De Block M, van Lijsebettens M. 2011. Energy efficiency and energy homeostatis as genetic and epigenetic components of plant performence and crop productivity. Curr. Opin. in Plant Biol., 14: 275-282.
  • Deikman J, Petracek M, Heard JE. 2012. Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr. Opin. Biotech., 23: 243- 250.
  • Demir Ö, Atay H, Eskioğlu O, Tuvan A, Demircan M, Akçakaya A. 2013. RCP 4.5 senaryosuna gore Türkiye’de sıcaklık ve yağış projeksiyonları. III. Türkiye İklim Değişikliği Kongresi, İstanbul, 3-5 Haziran, Türkiye.
  • Dolferus R. 2014. To grow or not to grow: A stressful decision for plants. Plant Sci., 2229: 247-261.
  • Ergen NZ, Budak H. 2009. Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress.Plant Cell Environ., 32: 220-236.
  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H. 2009. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics., 9: 377- 396.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant dorught stress: effects, mechanisms and management. Agron. Sustain. Dev., 29: 185-212.
  • Furner IJ, Matzke M. 2011. Methylation and demethylation of the Arabidopsis genome. Curr. Opin. in Plant Biol., 14:137- 141.
  • Grant-Downton RT, Dickinson HG. 2005. Epigenetics and its implicaitons for plant biology.1. The epigenetic networks in plants. Ann. Bot., 96: 1143-1164.
  • Herman JJ, Sultan SE. 2011. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implicaitons for natural populations. Front.Plant Sci., 2: Article 102.
  • Hu H, Xiong L. 2014. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol., 65: 715- 741.
  • Kapluhan, E. 2013. Türkiye’de kuraklık ve kuraklığın tarıma etkisi. Marmara Coğrafya Dergisi, 27: 487-510.
  • Keunen E, Peshev D, Vangronsveld J, Den Ende WV, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ., 36: 1242-1255.
  • Kim J, To TK, Nishioka T, Seki M. 2010. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ., 33: 604-611.
  • Kishor PB, Sreenivasulu N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostatis a more critical issue? Plant Cell Environ., 37: 300-311.
  • Liang X, Zhang L, Natarajan SK, Becker DF. 2013. Proline mechanism of stress survival. Antioxid.Redox Signal., 19: 998-1011.
  • Lopes MS, Rebetzke GJ, Reynolds M. 2014. Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J Exp. Bot., 65: 6167-6177. Mitouze M, Paszkowski J. 2011. Epigenetic contribution to stress adaptation in plants. Curr. Opin. in Plant Biol., 14: 267-274.
  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci., 5: Article 170.
  • Nevo E, Chen G. 2010. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33: 670-685.
  • Osakabe Y, Osakabe K, Shinozaki K, Tran LP. 2014. Response of plants to water stress. Front. Plant Sci., 5: Article 86. Paszkowski J, Grossniklaus U. 2011. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. in Plant Biol., 14: 195-203.
  • Rahavi MR, Migicovsky Z, Titov V, Kovalchuk I. 2011. Transgenerational adaptation to heavy metal salts in Arabidopsis. Front. Plant Sci., 2: Article 101.
  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfood DA. 2014. Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor. Appl. Genet., 127: 2525-2543.
  • Schmitz RJ, Zhang X. 2011. High-throughput approaches for plant epigenomic studies. Curr. Opin. in Plant Biol., 14: 130-136.
  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B. 2014. Drought stress responses in crops. Funct. Integr. Genomics, 14: 11-22.
  • Suzuki N, Rivero RM, Shulaev V, Blumward E, Mittler R. 2014. Abiotic and biotic stress combinations. New Phytol., 203: 32-43.
  • Taiz L, Zeiger E. 2010. Responses and adaptations to abiotic stress. In: Plant Physiology, Fifth Edition. Sunderland, MA: Sinauer Associates, Inc. pp. 755-778. ISBN 978-0-87893- 866-7.
  • Tuberosa R. 2012. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol., 3: Article 347.
  • Turner NC, Blum A, Cakir M, Steduto P, Tuberosa R, Young N. 2014. Strategies to increase the yield and yield stability of crops under drought – are we making progress? Funct. Plant Biol., 41: 1199-1206.
  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carasquillo R, Rabinowicz PD, Dedhia N, McCombie RW, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA. 2007. Epigenetic natural variation in Arabidopsis thaliana. PLOS Biol., 5: e174.
  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A. 2010. Stressinduced DNA methylation changes and their heritability in asexual dandelions. New Phytol., 185: 1108-1118.
  • Yuan L, Liu X, Luo M, Yang S, Wu K. 2013. Involvement of histone modificaitons in plant abiotic stress responses. J Integ. Plant Biol., 55: 892-901.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Molecular Detection of Aflatoxin Producing Strains of Aspergillus Flavus from Peanut (Arachis Hypogaea)

Adeela HUSSAİN, Awais AFZAL, Muhammad IRFAN, Kauser Abdulla MALİK

Laktokoksin BZ ve Enterosin KP'nin Yoğurt Kültürlerinin Aktivitesi Üzerine Etkisi

NİLGÜN ÖNCÜL, ZELİHA YILDIRIM, Metin YILDIRIM

zmir İli Ödemiş İlçesinde Damızlık Sığır Yetiştiricileri Birliği Üyesi İşletmelerde Sığırların Barındırılması

Erdal YAYLAK, YUSUF KONCA, NURSEL KOYUBENBE

Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar

ZAHİDE NESLİHAN ÖZTÜRK GÖKÇE

KOP Bölgesinde Organik Tarımın Dünü ve Bugünü

Havva Eda ÜSTÜNTAŞ, RAMAZAN İLHAN AYTEKİN, SEVGİ ÇALIŞKAN

Effects Of Drought Stress on Germination in Fourteen Provenances of Pinus Brutia Ten. Seeds in Turkey

HAKAN ŞEVİK, Nihat ERTÜRK

‘Hicaznar' Çeşidinde Farklı Uygulamaların Soğukta Depolama Süresince Fitokimyasal ve Uçucu Aroma Bileşimine Etkileri

AYŞE TÜLİN ÖZ, NESİBE EBRU KAFKAS, Mozhgan ZARİFİKHOSROSHAHİ, Tülin ŞAHİN

Tıbbi ve Aromatik Bitkiler ile Sebzelerde Kök Kaynaklı Sekonder Metabolitlerin Üretiminin Artırılmasına Yönelik In Vitro Uygulamalar

TUNHAN DEMİRCİ, Pınar ÖZDAMAR, NİLGÜN GÖKTÜRK BAYDAR

Elma Bitkisi (Malus domestica L.)'nde Foliar Uygulanan Salisilik Asitin Donmaya Karşı Etkileri

BENGÜ TÜRKYILMAZ ÜNAL, Oğuzhan MENTİŞ, ETHEM AKYOL

Descriptions and Seasonal Variations of Various Biotopes and Ecotones of Indus River Bed at Chashma Barrage, Pakistan

Tahira HUSSAİN, Zahid Baig MİRZA