Bitkilerde Hücre İçi Demir Dağıtım Mekanizmaları

Temel mikro-besin elementi demir (Fe) bitkide önemli rolleri bulunan birçok metalloproteinin aktif bölgesinde kofaktör olarak yer alır. Öte yandan aşırı reaktif olduğundan, hücre içerisinde fazla birikimi reaktif oksijen türlerinin üretimini tetikleyerek hücre ölümlerine neden olur. Dolayısıyla hücre içerisindeki demir homeostazı bitki gelişimi için çok önemlidir. Bitkiler demiri kök içerisine aldıktan sonra hücre içi kompartmanlara dağıtımını yaparlar. Hücre içi demir taşınımı ve dolayısıyla hücresel demir homeostazı farklı membran protein ailelerinin senkronize kontrolü sayesinde yürütülmektedir. Bu membran proteinlerinin demir eksikliği altında ifade seviyelerinin arttığı keşfedilmiştir. Bu taşıyıcıların görev ve regülasyonlarının irdelenmesi bitkilerdeki demir alım ve dağıtım mekanizmalarının anlaşılması açısından çok önemlidir. Bu yüzden bu derlemede hücre içerisine alınan demirin organellere dağıtımından sorumlu taşıyıcılar ile bu taşıyıcılar hakkındaki güncel gelişmelerden bahsedilmektedir.

Subcellular Iron Localization Mechanisms in Plants

The basic micro-nutrient element iron (Fe) is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

___

  • Arrivault S, Senger T, Krämer U. 2006. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal 46(5): 861-879.
  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK. 2011. The rice mitochondrial iron transporter is essential for plant growth. Nature Communications 2: 322.
  • Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK. 2013. Exploiting new tools for iron bio-fortification of rice. Biotechnology Advaces 31: 1624–1633. DOI:10.1016/j.biotechadv.2013.08.012.
  • Bernard DG, Cheng Y, Zhao Y, Balk J. 2009. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiology 151: 590-602.
  • Boutigny S, Sautron E, Finazzi G, Rivasseau C, Frelet Barrand A, Pilon M, Rolland N, Seigneurin Berny D. 2014. HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. Journal of Experimental Botany 65(6): 1529-1540.
  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Annals of Botany 105: 811-822.
  • Chen S, Sánchez Fernández R, Lyver ER, Dancis A, Rea PA. 2007. Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. Journal of Biological Chemistry 282: 21561- 21571.
  • Chu HH, Conte SS, Chan Rodriguez D, Vasques K, Punshon T, Salt DE, Walker EL. 2013. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Frontiers in Plant Science 4: 283.
  • Colangelo EP, Guerinot ML. 2004. The essential basic helixloop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16: 3400-3412.
  • Conte S, Chu H, Rodriguez DC, Punshon T, Vasques K, Salt DE, Walker EL. 2013. Arabidopsis thaliana Yellow Stripe1- Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Frontiers in Plant Science 4: 283.
  • Conte S, Stevenson D, Furner I, Lloyd A. 2009. Multiple antibiotic resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiology 151: 559-573.
  • Conte SS, Lloyd AM. 2010. The MAR1 transporter is an opportunistic entry point for antibiotics. Plant Signaling Behavior 5: 49-52.
  • Conte SS, Walker EL. 2011. Transporters contributing to iron trafficking in plants. Molecular Plant 4: 464-476.
  • Desbrosses Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U. 2005. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Letters 579: 4165.
  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320: 942-945.
  • Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C. 2013. The Arabidopsis YELLOW STRIPE LIKE4 and 6 Transporters Control Iron Release from the Chloroplast. Plant Cell 25: 1040-1055.
  • Duy D, Stube R, Wanner G, Philippar K. 2011. The Chloroplast Permease PIC1 Regulates Plant Growth and Development by Directing Homeostasis and Transport of Iron. Plant Physiology 155: 1709-1722.
  • Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K. 2007. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19: 986- 1006.
  • Eroglu S, Meier B, von Wirén N, Peiter E. 2016. The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiology 170(2): 1030-1045.
  • Helms TC, Scott RA, Schapaugh WT, Goos RJ, Franzen DW, Schlegel AJ, 2010. Soybean iron-deficiency chlorosis tolerance and yield decrease on calcareous soils. Agronomy Journal 102(2): 492-498.
  • Finazzi G, Petroutsos D, Tomizioli M, Flori S, Sautron E, Villanova V, Rolland N, Seigneurin Berny D. 2015. Ions channels/transporters and chloroplast regulation. Cell Calcium 58(1): 86-97.
  • Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ. 2014. Vacuolar-iron-transporter1-like proteins mediate iron homeostasis in Arabidopsis. PloS One 9(10): 110468.
  • Grillet L, Ouerdane L, Flis P, Hoang MT, Isaure MP, Lobinski R, Curie C, Mari S. 2014. Ascorbate efflux as a new strategy for iron reduction and transport in plants. Journal of Biological Chemistry 289: 2515–2525.
  • Grotz N, Guerinot ML. 2006. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica ActaMolecular Cell Research 1763: 595-608.
  • Guerinot ML. 2001. Improving rice yields--ironing out the details. Nature Biotechnology 19(5): 417-419.
  • Haydon MJ, Cobbett CS. 2007. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiology 143: 1705-1719.
  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U. 2012. Vacuolar Nicotianamine Has Critical and Distinct Roles under Iron Deficiency and for Zinc Sequestration in Arabidopsis. Plant Cell 24: 724-737.
  • Heazlewood JL, Tonti Filippini JS, Gout AM, Day DA, Whelan J, Millar AH. 2004. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16: 241-256.
  • Hell R, Stephan UW. 2003. Iron uptake, trafficking and homeostasis in plants. Planta 216: 541-551.
  • Jain A,Wilson GT, Connolly EL. 2014.The diverse roles of FRO family metallo reductases in iron and copper homeostasis. Frontiers in Plant Science 5: 100. DOI: 10.3389/fpls.2014.00100.
  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML. 2008. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proceedings of the National Academy of Sciences 105: 10619-10624.
  • Jeong J, Guerinot ML. 2009. Homing in on iron homeostasis in plants. Trends in Plant Science 14(5): 280-285.
  • Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M. 2009. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant and Cell Physiology 50(6): 1156-1170.
  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML. 2006. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314 (5803): 1295-1298.
  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M. 2004. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant and Cell Physiology 45: 1749-1758.
  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G. 2001. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13: 89-100.
  • Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal 24: 4041-4051.
  • Li L, Chen OS, Ward DM, Kaplan J. 2001. CCC1 is a transporter that mediates vacuolar iron storage in yeast. Journal of Biological Chemistry 276: 29515-29519.
  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. 2010. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22(7): 2219-2236.
  • López Millán AF, Duy D, Philippar K. 2016. Chloroplast iron transport proteins–function and impact on plant physiology. Frontiers in Plant Science 7.
  • Marschner H, Marschner P. 2011. Marschner's mineral nutrition of higher plants. Elsevier 89.
  • Mary V, Ramos MS, Gillet C, Socha AL, Giraudat J, Agorio A, Merlot S, Clairet C, Kim SA, Punshon T, Guerinot ML. 2015. Bypassing Iron Storage in Endodermal Vacuoles Rescues the Iron Mobilization Defect in the natural resistance associated-macrophage protein3 natural resistance associated-macrophage protein4 Double Mutant. Plant Physiology 169 (1): 748-759.
  • Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M. 2009. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. The Plant Journal 59 (3). 437-447.
  • Moller IM, Jensen PE, Hansson A. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459-481.
  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML. 2009. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21: 3326-3338.
  • Nouet C, Motte P, Hanikenne M. 2011. Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science 16: 395-404.
  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. 2011. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry 286 (7): 5446-5454.
  • Palmer CM, Guerinot ML. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5: 333-340.
  • Pottier M, Oomen R, Picco C, Giraudat J, Scholz‐Starke J, Richaud P, Carpaneto A, Thomine S. 2015. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. The Plant Journal 83 (4). 625-637.
  • Remy E, Cabrito TR, Batista RA, Hussein MA, Teixeira MC, Athanasiadis A, Sá-Correia I, Duque P. 2014. Intron retention in the 5′ UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in Arabidopsis. PLoS Genetics 10 (5): e1004375.
  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P. 2015. The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis. Plant and Cell Physiology 56 (1): 148-162.
  • Roschzttardtz H, Conejero G, Curie C, Mari S. 2009. Identification of the Endodermal Vacuole as the Iron Storage Compartment in the Arabidopsis Embryo. Plant Physiology 151: 1329-1338.
  • Roschzttardtz H, Grillet L, Isaure MP, Conéjéro G, Ortega R, Curie C, Mari S. 2011. Plant Cell Nucleolus as a Hot Spot for Iron. Journal of Biological Chemistry 286: 27863-27866.
  • Roschzttardtz H, Séguéla-Arnaud M, Briat JF, Vert G, Curie C. 2011. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23: 2725-2737.
  • Sasaki A, Yamaji N, Xia J, Ma JF. 2011. OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiology 157: 1832-1840.
  • Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wirén N. 2006. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. Journal of Biological Chemistry 281: 25532-25540.
  • Schaedler TA, Thornton JD, Kruse I, Schwarzländer M, Meyer AJ, van Veen HW, Balk J. 2014. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. Journal of Biological Chemistry 289 (34). 23264-23274.
  • Schmidt W, Buckhout TJ. 2011. A hitchhiker's guide to the Arabidopsis ferrome. Plant Physiology and Biochemistry 49: 462-470.
  • Seo PJ, Park J, Park MJ, Kim YS, Kim SG, Jung JH, Park CM. 2012. A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochemical Journal 442: 551-561.
  • Shanmugam V, Wang YW, Tsednee M, Karunakaran K, Yeh KC. 2015. Glutathione plays an essential role in nitric oxide‐ mediated iron‐deficiency signaling and iron‐deficiency tolerance in Arabidopsis. The Plant Journal 84 (3): 464-477.
  • Socha AL, Guerinot ML. 2014. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science 5.
  • Socha AL. 2016. Uncovering the mechanisms controlling metal micronutrient homeostasis in plants. Dartmouth College. Stacey MG, Osawa H, Patel A, Gassmann W, Stacey G. 2006.
  • Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223 (2): 291-305.
  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G. 2008. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant physiology 146 (2): 589-601.
  • Tarantino D, Morandini P, Ramirez L, Soave C, Murgia I. 2011. Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism. Plant Physiology and Biochemistry 49 (5): 520-529.
  • Teng YS, Su Ys, Chen LJ, Lee YJ, Hwang I, Li Hm. 2006. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18: 2247-2257.
  • Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F. 2010. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. Plant Cell 22: 468-480.
  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E. 2008. Plant ABC proteins–a unified nomenclature and updated inventory. Trends in Plant Science 13: 151-159.
  • Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C. 2009. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229: 1171-1179.
  • Vert G, Briat JF, Curie C. 2001. Arabidopsis IRT2 gene encodes a root‐periphery iron transporter. The Plant Journal 26: 181- 189.
  • Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK. 2015. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. Journal of Experimental Botany 67(5): 1357- 1368.
  • Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. 2013. Cellular iron homeostasis and metabolism in plant. Frontiers in Plant Sciences 4: 490. doi: 10.3389/fpls.2013.00490. Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. 2013. Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in Plant Science 18: 305– 311.
  • Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ. 2005. Molecular and biochemical characterization of the Fe (III) chelate reductase gene family in Arabidopsis thaliana. Plant and Cell Physiology 46: 1505-1514.
  • Yoshida K, Negishi T. 2013. The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. Phytochemistry 94: 60-67.
  • Zhai Z, Gayomba SR, Jung HI, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML. 2014. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell 26 (5): 2249-2264.
  • Zhang Y, Xu YH, Yi HY, Gong JM. 2012. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant Journal 72: 400-410.
  • Zheng L, Fujii M, Yamaji N, Sasaki A, Yamane M, Sakurai I, Sato K, Ma JF. 2011. Isolation and characterization of a barley yellow stripe-like gene, HvYSL5. Plant and Cell Physiology 52: 765-774
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Effects of Salinity Stress on Emergence and Seedling Growth Parameters of Some Maize Genotypes (Zea mays L.)

ÖMER KONUŞKAN, HÜSEYİN GÖZÜBENLİ, İbrahim ATIŞ, MEHMET ATAK

Modernized Irrigation Technologies in West Africa

HAKAN BÜYÜKCANGAZ, Mohammed ALHASSAN, Jacqueline Nyenedio HARRİS

Urban Agriculture: Search for Agricultural Practice in Urbanized Rural Areas

CELİLE ÖZÇİÇEK DÖLEKOĞLU, ARİFE SEMA GÜN

Determination of Malondialdehyde (MDA), Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx) Levels in Kangal Dogs with Maternal Cannibalism

NAZLI ERCAN, MUSTAFA KOÇKAYA

Bazı Yerli ve Yabancı Trabzon Hurması (Diospyros kaki L.) Çeşit ve Tiplerinin Morfolojik ve Moleküler Karakterizasyonu

TURGUT YEŞİLOĞLU, Yıldız Aka KAÇAR, BİLGE YILMAZ, Meral İNCESU, BERKEN ÇİMEN

Yenice–Davutköy (Çanakkale) Sulama Göletlerinin Fizikokimyasal ve Mikrobiyolojik Kalitesinin Araştırılması

KAHRAMAN SELVİ, SEDA ÖZDİKMENLİ TEPELİ, BURCU İLERİ, RAMAZAN YILDIZ, MEHMET ALİ YÜCEL

Husbandry and Sustainability of Water Buffaloes in Turkey#

ORHAN ERMETİN

Determination of Phenological Properties and Effective Heat Summation Requirements of Some Apples Varieties in Ankara (Kalecik) Conditions

HÜLYA ÜNVER

Akışkan Yatak Kaplama ve Gıda Uygulamaları

Zeynep ATAK, MEHMET KOÇ, Figen KAYMAK-ERTEKİN

Investigation of the Structural Deformation Behaviour of the Subsoiler and Paraplow Tines by Means of Finitie Element Method

KEMAL ÇAĞATAY SELVİ