Bilgisayarlı Görüntüleme Sistemi: Gıda Endüstrisinde Kullanımı ve Uygulamaları

Bilgisayarlı görüntüleme sistemi, kamera, görüntü yakalama kartı, bilgisayar donanımı ve görüntü işleme teknolojilerinin bir birleşimidir. Günümüzde güvenlik garantisi sağlayan gıdalar tüketiciler tarafından daha fazla tercih edilmektedir. Bu doğrultuda gıda endüstrisinde nitel bilgi sağlama ve belirli işlemleri hızlandırma olanakları sağlaması açısından bilgisayarlı görüntüleme sistemi sektöre çeşitli avantajlar sunmaktadır. Bilgisayarlı görüntüleme sistemi, uygun görüntü işleme ve analizleme algoritmaları ile geleneksel yöntemlerden daha hızlı olması, doğru ve güvenilir sonuçlar sağlaması açısından günümüzde tahıllar, meyve sebze, et ve deniz ürünleri ve diğer bazı işlenmiş gıdaların kontrolünde geniş çapta uygulama alanı bulmuştur. Sistemin objektifliği, hızlılığı, ekonomikliği ve etkinliği bilgisayarlı görüntüleme sisteminin önemli avantajları olarak değerlendirilmekte ve sektörde alternatif bir yöntem olarak gelişim göstermektedir.

Machine Vision System: Food Industry Applications and Practices

Machine vision system is a combination of camera, image capture card, computer hardware and image processing technology. Safe foods are highly preferred by consumers today and accordingly, machine vision system has the edge on food sector for ensuring qualitative data and accelerating some certain processes. Machine vision system, which is more accurate, reliable and faster than conventional methods, has been used in wide range of applications in the inspection of cereals, fruits and vegetables, meats and marine products and some other processed foods in combination with convenient image processing and analysing algorithms. Considering the objectivity, promptness, economy and effectiveness as the chief advantages, the system makes progress as an alternative method in the sector.

___

  • Abildgaard OHA, Kamran F, Dahl AB, Skytte JL, Nielsen FD, Thomsen CL, Andersen PE, Larsen R, Frisvad JR. 2015. Non-invasive assessment of dairy products using spatially resolved diffuse reflectance spectroscopy. Applied Spectroscopy, 69(9): 1096-1105. DOI:10.1366/2F14-07529
  • Adi K, Pujiyanto S, Nurhayati OD, Pamungkas A. 2017. Beef quality identification using thresholding method and decision tree classification based on android smartphone. J Food Quality, 2017,1-10. DOI:10.1155/2017/1674718
  • Aggarwal AK, Mohan R. 2010. Aspect ratio analysis using image processing for rice grain quality. Int J Food Eng., 6 (5): 1-14. DOI:10.2202/1556-3758.1788
  • Ahmad IS, Reid JF, Paulsen MR, Sinclair JB. 1999. Color classifier for symptomatic soybean seeds using ımage processing. Plant Disease, 83(4): 320-327. Ahmad, I. S., Reid, J. F., Paulsen, M. R., & Sinclair, J. B. (1999). Color Classifier for Symptomatic Soybean Seeds Using Image Processing. Plant Disease, 83(4), 320–327. DOI:10.1094/pdis.1999.83.4.320
  • Alamprese C, Casale M, Sinelli L, Lanteri S, Casiraghi E. 2013. Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy. LWT-Food Sci Technol., 53(1): 225-232. DOI:10.1016/j.lwt.2013.01.027
  • Alikhanov D, Penchev S, Georgieva T, Moldajanov A, Shynybaj Z, Daskalov P. 2015. Indirect method for egg weight measurement using image processing. Int J Emerging Technol Advanced Eng., 5 (11): 30-34.
  • Ariana DP, Lu R, Guyer DE. 2006, Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Computers Electronics Agric., 53: 60–70. DOI:10.1016/j.compag.2006.04.001
  • Arivazhagan S, Shebiah RN, Sudharsan N, Kannan RR, Ramesh, R. 2013. External and internal defect detection of egg using machine vision. J Emerging Trends Computing Information Sci., 4(3): 257-262.
  • Arsalane A, El Babri N, Rhofir K N, Tabyaoui A, Klilou A. 2017. Beef and horse meat discrimination and storage time classification using a portable device based on DSP and PCA method. Int J Intelligent Entreprise, 4: 60-74. DOI:10.1504/IJIE.2017.087005
  • Arsalane A, El Babri N, Tabyaoui A, Klilou A, Rhofir K, Halimi A. 2018. An embedded system based on DSP platform and PCA-SVM algorithms for rapid beef meat freshness prediction and identification. Computers Electronics Agric., 152: 385–392. DOI:10.1016/j.compag.2018.07.031
  • Ataş M, Yardımcı Y, Temizel A. 2012. A new approach to aflatoxin detection in chili pepper by machine vision. Computers Electronics Agric., 87: 129–141. DOI:10.1016/j.compag.2012.06.001
  • Baiano A. 2017. Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review. J Food Eng., 214: 10-15. DOI:10.1016/j.jfoodeng.2017.06.012
  • Bhargava A, Bansal A. 2018. Fruits and vegetables quality evaluation using computer vision: A review. J King Saud University – Computer Information Sci., DOI:10.1016/ j.jksuci.2018.06.002
  • Büyükcan MB. 2016. Assessing and maintaining quality features of fresh apricots with non-thermal methods and processing with digital imaging. Çanakkale Onsekiz Mart University, Food Engineering. Ph D thesis. 110p.
  • Calvo H, Moreno-Armendáriz MA, Godoy-Calderón S. 2016. A practical framework for automatic food products classification using computer vision and inductive characterization. Neurocomputing, 175: 911-923. DOI:/10.1016/j.neucom.2015.06.095
  • Chang LY, He SP, Liu Q, Xiang JL, Huang DF. 2018. Quantifying muskmelon fruit attributes with A-TEP-based model and machine vision measurement. J Integrative Agric., 17(6): 1369–1379. DOI:10.1016/S2095-3119(18)61912-4
  • Chen YR, Chao K, Kim MS. 2002. Machine vision technology for agricultural applications. Computers Electronics Agric., 36: 173-191. DOI: 10.1016/S0168-1699(02)00100-X
  • Cluff K, Nagathan GK, Subbiah J, Lu R, Calkins CR, Samal A. 2008. Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sens. & Instrumen. Food Quality, 2: 189–196. DOI:10.1007/s11694- 008-9052-2
  • Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P. 2011. Shape analysis of agricultural products: A review of recent research advances and potential application to computer vision. Food Bioprocess Technol., 4: 673-692. DOI:10.1007/s11947-011-0556-0
  • Davidson VJ, Ryks J, Chu T. 2001. Fuzzy models to predict consumer ratings for biscuits based on digital ımage features. Ieee Transactions On Fuzzy Systems, 9 (1): 62-67. DOI:10.1109/91.917115
  • Davies ER. 2009. The application of machine vision to food and agriculture: A review. Imaging Sci J., 57 (4): 197-217. DOI:10.1179/174313109X454756
  • Dehrouyeh MH, Omid M, Ahmadi H, Mohtasebi SS, Jamzad M, Omid M. 2010. Grading and quality inspection of defected eggs using machine vision. Int J Advanced Sci Technol., 17: 23-30.
  • Dénes DL, Parrag V, Felföldi J, Baranyai L. 2013. Influence of parameters of drying on laser induced diffuse reflectance of banana discs. J Food Physics, 26: 11-16.
  • Di Rosa AR, Leone F, Cheli F, Chiofalo V. 2017. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment-A review. J Food Eng., 210: 62-75. DOI:10.1016/ j.jfoodeng.2017.04.024
  • Douik A, Abdellaoui M. 2010. Cereal grain classification by optimal features and intelligent classifiers. Int J Computers, Communications & Control, 4: 506-516. DOI:10.15837 /ijccc.2010.4.2508
  • Dowlati M, Mohtasebi JJ, de la Guardia M. 2012. Application of machine-vision techniques to fish-quality assessment. Trends Anal Chem., 40: 168-179. DOI:10.1016/j.trac.2012.07.011
  • Du CJ, Sun DW. 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol., 15(5): 230-249. DOI:10.1016/j.jfoodeng.2004.11.017
  • Du CJ, Sun DW. 2008. Multi-classification of pizza using computer vision and support vector machine. J Food Eng., 86: 234–242. DOI:10.1016/j.jfoodeng.2007.10.001
  • Ebrahimi E, Mollazade K, Babaei S. 2014. Toward an automatic whey purity measuring device: A machine vision based neural networks assisted imperialist competitive alghoritm approach. Measurment, 55: 196-205. DOI:10.1016 /j.measurement.2014.05.003
  • ElMasry G, Cubero S, Molto E, Blasco J. 2012. In-line sorting of irregular potatoes by using automated computer-based machine vision system. J Food Eng., 112: 60–68. DOI:10.1016/j.jfoodeng.2012.03.027
  • Fellegari R, Navid, H. 2011. Determining the orange volume using image processing, International Conference on Food Engineering and Biotechnology, Singapore, Int Conference Food Eng Biotechnology, IACSIT Press: 180-184.
  • Felker FC, Paulis JW. 1993. Quantitative estimation of corn endosperm vidreosity by video image analysis. Cereal Chem., 70 (6): 685-689.
  • Férnandez L, Castillero C, Aguilera M. 2005. An application of image analysis of dehydration of apple discs. J Food Eng., 67: 185–193. DOI:10.1016/j.jfoodeng.2004.05.070
  • Firtha F, Jasper A, Friedrich L, Felföldi J. 2014. Hyperspectral Qualification of Aged Beef Sirloin, International Conference of Agricultural Engineering, Spain, 6 p.
  • Gowen AA, O’Donell CP, Cullen PJ, Bell SEJ. 2008, Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur J Pharmaceutics Biophar., 69: 10–22. DOI:10.1016/j.ejpb.2007.10.013
  • Gowen AA, Burger J, O'Callaghan D, O'Donnell CP. 2009. Potential applications of HSI for quality control in dairy foods. 1st International Workshop on Computer Image Analysis in Agriculture, Potsdam, Germany, p: 65-81.
  • Granitto PM, Navone HD, Verdes PF, Ceccatto HA. 2002. Weed seeds identification by machine vision. Computers Electronics Agric., 33 (2): 91-103. DOI:10.1016/S0168-1699 (02)00004-2
  • Graves M, Batchelor B. 2004. Machine Vision for the Inspection of Natural Products. Eds. Mark Graves and Bruce Batchelor. 2nd Edition. Springer, New York. 471 p.
  • Guevara-Hernandez F, Gomez-Gil J. 2011. A machine vision system for classification of wheat and barley grain kernels. Spanish J Agric Res., 9 (3): 672-680. DOI:10.5424 /sjar/20110903-140-10
  • Guo Y, Ding H, Xu J, Xu H. 2014. Clustering analysis based on hyperspectral DN values of waste oil. Remote Sensing for Land and Resources, 26: 37-41.
  • Hambali H, Abdullah SLS, Jamil N, Harun H. 2016. Intelligent segmentation of fruit images using an integrated tresholding and adaptive K-means method (TsNKM), Jurnal Teknologi, 78 (6-5): 13-20. DOI:10.11113/jt.v78.8993
  • Heitschmidt GW, Park B, Lawrence KC, Windham WR, Smith DP. 2007. Improved hyperspectral imaging system for fecal detection on poultry carcasses. Transactions of the ASABE, 50(4): 1427-1432.
  • Huang L, Zhao J, Chen Q, Zhang Y. 2014. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chem., 45: 228- 236. DOI:10.1016/j.foodchem.2013.06.073
  • Jackman P, Sun DW, Allen P. 2011. Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci Technol., 22: 185-197. DOI:10.1016/j.tifs.2011.01.008
  • Javadikia P, Dehrouyeh MH, Naderloo L, Rabbani H, Lorestani AN. 2011. Measuring the Weight of Egg with Image Processing and ANFIS Model. International Conference Swarm, Evolutionary and Memetic Computing. SEMCCO 2011, Proceedings part I. 407-416. DOI:10.1007/978-3-642- 27172-4_50
  • Jeyamkondan S, Kranzler SA, Lakshmikanth A. 2001. Predicting Beef Tenderness with Computer Vision. 2001 ASAE Annual International Meeting, Paper number: 01-3063. DOI:10.13031/2013.7319
  • Jinorose M, Prachayawarakorn S, Soponronnarit S. 2010. Development of a computer vision system and novel evaluation criteria to characterize color and appearance of rice. Drying Technol., 28: 1118-1124. DOI:10.1080 /07373937.2010.506174
  • Jirsa O, Polišenská I. 2011. Identification of Fusarium damaged wheat kernels using image analysis. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 54 (5): 125-130.
  • Kamruzzaman M, Sun DW. 2016. Introduction to hyperspectral imaging technology, Computer Vision Technology For Food Industry, Ed. D.W.Sun, 2nd Ed., Academic Press, 658 p.
  • Kaur H, Singh B. 2013. Classification and grading rice using multi-class SVM, Int J Sci Res Publications, 3 (4): 1-5.
  • Khazaei NB, Tavakoli T, Ghassemian H, Khoshtaghaza MH, Banakar A. 2013. Applied machine vision and artificial neural network for modeling and controlling of the grape drying process. Computers Electronics Agric., 98: 205–213. DOI:10.1016/j.compag.2013.08.010
  • Kiani S, Minaei S. 2016. Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization. Food Chem., 212: 392–394. DOI:10.1016/j.foodchem.2016.04.132
  • Kim I, Kim MS, Chen YR, Kong SG. 2004. Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging. Transactions of the ASAE, 47(5): 1785−1792. DOI:10.13031/2013.17595
  • Kuchekar NA, Yerigeri VV. 2018. Rice grain quality grading using digital image processing techniques. IOSR J Electronics Communication Eng., 13 (3): 84-88. DOI:10.9790/2834-1303018488
  • Kurtulmuş F, Ünal H. 2015. Discriminating rapeseed varieties using computer vision and machine learning. Expert Systems with Applications, 42: 1880–1891. DOI:10.1016 /j.eswa.2014.10.003
  • Lawrence KC, Yoon SC, Jones DR, Heidschmidt GW, Park B, Windham, WR. 2009. Modified pressure system for imaging egg cracks. Transactions of the ASAE, 52 (3): 983-990. DOI:10.13031/2013.27382
  • Lee CY, Yan L, Wang T, Lee SR, Park CW. 2011. Intelligent classification methods of grain kernels using computer vision analysis. Measurement Sci Technol., 22: 1-6. DOI:10.1088/0957-0233/22/6/064006
  • Li J, Tan J, Shatadal P. 2001. Classification of tough and tender beef by image texture analysis. Meat Sci., 57: 341-346. DOI:10.1016/S0309-1740(00)00105-4
  • Li Y, Dhakal S, Peng Y. 2012. A machine vision system for identification of micro-crack in egg shell. J Food Eng., 109: 127–134. DOI:10.1016/j.jfoodeng.2011.09.024
  • Lorente D, Gómez J, Aleixos N, Cubero S, García OL, Serrano A, Soria E, Blasco J. 2013. Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food Bioprocess Technol., 6(2): 530-541. DOI:10.1007/s11947-011-0737-x
  • Lu R, Peng Y. 2006. Hyperspectral scattering for assessing peach fruit firmness. Biosystems Eng., 93 (2): 161– 171. DOI:10.1016/jbiosystemseng.2005.11.004
  • Misimi E, Erikson U, Skavhaug A. 2008. Quality grading of Atlantic salmon (Salmo salar) by computer vision. J Food Sci., 73 (5): E211. DOI:10.1111/j.1750-3841.2008.00779.x
  • Nashat S, Abdullah A, Abdullah MZ. 2014. Machine vision for crack inspection of biscuits featuring pyramid detection scheme. J Food Eng., 120:233–247. DOI:10.1016 /j.jfoodeng.2013.08.006
  • Ni H, Gunasekaran S. 2004. Image processing algorithm for cheese shred evaluation. J Food Eng., 61: 37-45. DOI:10.1016/S0260-8774(03)00186-9
  • Nicolai BM, Lotze E, Peirs A, Scheerlinck N, Theron KI. 2006. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology Technol., 40 (1):1–6. DOI:10.1016/j.postharvbio.2005.12.006
  • Omid M, Soltani M, Dehrouyeh MH, Mohtasebi SS, Ahmadi H. 2013. An expert egg grading system based on machine vision and artificial intelligence techniques. J Food Eng., 118: 70- 77. DOI:10.1016/j.jfoodeng.2013.03.019
  • Özcan M. 2008. Tahribatsız ve hızlı yöntemlerle kırmızıbiber ve fındıkta kalite kontrolü. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. Yüksek Lisans Tezi. Isparta. 83s.
  • Pang B, Sun X, Liu D, Chen K. 2014. Beef marbling ımage segmentation based on homomorphic filtering. J Multimedia, 9 (2): 189-195. DOI:10.4304/jmm.9.2.189-195
  • Parmar RR, Jain KR, Modi CK. 2011. Unified approach in food quality evaluation using machine vision. International Conference on Advances in Computing and Communications, 192: 239-248. DOI:10.1007/978-3-642- 22720-2_24
  • Patel VC, McClendon RW, Goodrum JW. 1998. Color computer vision and artificial neural networks for the detection of defects in poultry eggs. Artificial Intelligence Review, 12: 163-176. DOI:10.1023/A:1006509010816
  • Patel KK, Kar A, Jha SN, Khan MA. 2012. Machine vision system: a tool for quality inspection of food and agricultural products. J Food Sci Technol.,–Mysore, 49 (2): 123-141. DOI:10.1007/s13197-011-0321-4
  • Patricio DI, Rieder R. 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers Electronics Agric., 153: 69-81. DOI:10.1016/j.compag.2018.08.001
  • Pazoki A, Pazoki Z. 2011. Classification system for rain fed wheat grain cultivars using artificial neural network. African J Biotechnol., 10 (41): 8031-8038. DOI:10.5897/AJB11.488
  • Peng Y, Wu J. 2008. Hyperspectral scattering profiles for prediction of beef tenderness. ASABE Annual International Meeting, RI, Paper No. 080004. DOI:10.13031/2013.25019
  • Raponi F, Moscetti R, Monarca D, Colantoni A, Massantini R. 2017. Monitoring and optimization of the process of drying fruits and vegetables using computer vision: A review. Sustainability, 9: 1-27. DOI://10.3390/su9112009
  • Ravikanth L, Singh CB, Jayas DS, White NDG. 2015. Classification of contaminants from wheat using nearinfrared hyperspectral imaging. Biosystem Eng., 135: 73-86. DOI:10.1016/j.biosystemseng.2015.04.007
  • Romano G, Nagle M, Müller J. 2012. Monitoring physical parameters of tropical fruits during drying by application of laser light in the VIS/NIR spectrum, International Conference of Agricultural Engineering, Valencia. 1-6.
  • Ropodi AI. 2017. Determination of minced meat quality using machine learning. Agricultural University of Athens. PhD Thesis. 259 p.
  • Sanaeifar A, Jafari A, Golmakani MT. 2018. Fusion of dielectric spectroscopy and computer vision for quality characterization of olive oil during storage. Computers Electronics Agric., 145: 142–152. DOI:10.1016/j.compag.2017.12.035
  • Shafiee S, Minaei S, Moghaddam-Charkari N, GhasemiVarnamkhasti M, Bargezar M. 2013. Potential application of machine vision to honey characterization. Trends Food Sci Technol., 30: 174-177. DOI:10.1016/j.tifs.2012.12.004
  • Shanin MA, Symons SJ. 2005. Seed sizing from images of nonsingulated grain samples. Canadian Biosystems Eng., 47: 49- 55.
  • Shrestha B, Kang YM, Yu D, Baik OD. 2016. A two-camera machine vision approach to separating and identifying laboratory sprouted wheat kernels. Biosystems Eng., 147: 265-273. DOI:10.1016/j.biosystemseng.2016.04.008
  • Sofu AB. 2006. Yoğurtların depolama esnasında mikrobiyal ve kimyasal değişimlerinin bilgisayarlı görüntüleme sistemiyle belirlenmesi ve elde edilen verilerin yapay sinir ağlarıyla değerlendirilmesi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. Yüksek Lisans Tezi. 98s.
  • Steenhoek LW, Misra MK, Hurburg CR, Bern CJ. 2001. Implementing a computer vision system for kernel damage evaluation. Applied Eng. Agric, 17 (2): 235-240. DOI:10.13031/2013.5448
  • Sture Ø, Øye ER, Skavhaug A, Mathiassen JR. 2016. A 3D machine vision system for quality grading of Atlantic salmon. Computers Electronics Agric., 123: 142–148. DOI:10.1016/j.compag.2016.02.020
  • Su Q, Kondo N, Li M, Sun H, Riza DFA. 2017. Potato feature prediction based on machine vision and 3D model rebuilding. Computers Electronics Agric, 137: 41–51. DOI:10.1016/j.compag.2017.03.020
  • Sun DW. 2000. Inspecting pizza topping percentage and distribution by a computer vision method. J Food Eng., 44: 245-249. DOI:10.1016/S0260-8774(00)00024-8
  • Szczypiński PM, Zapotoczny P. 2012. Computer vision algorithm for barley kernel identification, orientation estimation and surface structure assessment. Computers Electronics Agric., 87: 32-38. DOI:10.1016/j.compag.2012.05.014
  • Talb SS. 2018. Determining the volume of air cells in hen egg during the storage time. Siirt University, Food Engineering. Master Thesis. 57p.
  • Tan J. 2004. Meat quality evaluation by computer vision. J Food Eng., 61: 27–35. DOI:10.1016/S0260-8774(03)00185-7
  • Tarlak F. 2018. Extending shelf-life of mushroom (Agaricus bisporus): Microbial parameter estimation and computer vision system design. Gebze Technical University. Ph.D. thesis. 89p.
  • Temizkan R. 2017. Beyaz nektarin kalitesinin ısıl olmayan muhafaza yöntemleriyle korunması ve görüntü işleme teknikleriyle değerlendirilmesi. Çanakkale Onsekiz Mart Üniversitesi. Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. Doktora tezi. 240s.
  • Tipsombatboon P, Piriyapongsa J, Jenwitheesuk E, Tongsima S. 2012. Random image selection technique coupled with multiple thresholding algorithms for determination of beef marbling fat content. Image User And Developer Conference, Luxemburg, Vol:4: 1-6.
  • Velioğlu HM. 2010. Görüntü İşleme Teknolojisi ve Yapay Sinir Ağlarının Gıda Ürünlerinde Bazı Kalite Özelliklerinin Belirlenmesinde Kullanılması. Namık Kemal Üniversitesi. Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. Doktora Tezi. 90s.
  • Vithu P, Tech M, Moses JA, Tech M. 2016. Machine vision system for food grain quality evaluation: A review. Trends Food Sci Technol., 56:13-20. DOI:10.1016/ j.tifs.2016.07.011
  • Wang HH, Sun DW. 2002. Melting characteristics of cheese: Analysis of effects of cheese dimensions using image processing techniques. J Food Eng., 52(3): 279–284. DOI:10.1016/S0260-8774(01)00116-9
  • Wang HH, Sun DW. 2004a. Evaluation of the oiling off property of cheese with computer vision: Correlation with fat ring test. J Food Eng., 61: 47-55. DOI:10.1016/S0260-8774(03)00181- X
  • Wang HH, Sun DW. 2004b. Evaluation of the oiling off property of cheese with computer vision: Influence of cooking conditions and sample dimensions. J Food Eng., 61: 57-66. DOI:10.1016/S0260-8774(03)00187-0
  • White DJ, Svellingen C, Strachan NJC. 2006. Automated measurement of species and length of fish by computer vision. Fisheries Res., 80 (2-3): 203-210. DOI:10.1016/j.fishres.2006. 04.009
  • Wu D and Sun DW. 2013. Colour measurements by computer vision for food quality control-A review. Trends Food Sci Technol., 29: 5-20. DOI:10.1016/j.tifs.2012.08.004
  • Xie C, Wang Q, He Y. 2014. Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms. PLoS One, 9: 98522. DOI:10.1371/journal.pone.0098522
  • Xu M, Wang J, Gu S. 2019. Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy. J Food Eng., 241: 10–17. DOI:10.1016/j.jfoodeng.2018.07.020
  • Yadav BK, Jindal VK. 2001. Monitoring milling quality of rice by image analysis. Computers Electronics Agric., 33 (1): 19- 33. DOI:10.1016/S0168-1699(01)00169-7
  • Zareiforoush H, Minaei S, Alizadeh MR, Banakar A, Samani BH. 2016. Design, development and performance evaluation of an automatic control system for rice whitening machine based on computer vision and fuzzy logic. Computers Electronics Agric., 124: 14-22. DOI:10.1016/j.compag.2016.01.024
  • Zhang B, Huang W, Li J, Zhao C, Fan S, Wu J, Liu C. 2014. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res Int., 62: 326-343. DOI:10.1016/j.foodres.2014.03.012
  • Zheng C, Sun DW. 2016. Object measurement methods, Computer Vision Technology for Food Quality Evaluation, Ed. Da-Wen Sun, 2nd Ed., Academic Press, 658 ps.
  • Zhou L, Chalana V, Kim Y. 1998. PC-based machine vision system for real time computer-aided potato inspection. Int J Imaging Systems Technol., 9(6): 423-433.
  • DOI:10.1002/(SICI)1098-1098(1998)9:6<423::AIDIMA4>3.0.CO;2-C Zion B, Shklyar A, Karplus I. 2000. In-vivo fish sorting by computer vision. Aquacultural Eng., 22: 165–179. DOI:10.1016/S0144-8609(99)00037-0
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)