Bazı Turp Çeşitlerinin Tuza Tolerans Düzeylerinin Belirlenmesi ve Tuzlu Koşullarda Çimlenme Üzerine Salisilik Asidin Etkinliğinin Değerlendirilmesi

Bu çalışma, farklı turp çeşitlerinin (beyaz, siyah, kırmızı, kırmızı fındık turp) tuz stresi koşullarında tolerans düzeylerini belirlemek ve dışarıdan salisilik asit (SA) uygulamasının çimlenme ve vejetatif gelişim üzerine etkinliğini tespit etmek amacıyla yapılmıştır. Bu amaçla; çimlenme yüzdesi (%), çimlenme süresi, çimlenme indeksi hesaplanmış, ayrıca yaprak sayısı (adet), sürgün boyu (cm), kök uzunluğu (cm), yaprak genişliği (cm), yaprak uzunluğu (cm), gövde çapı (mm), bitki yaş ve kuru ağırlıkları (g) ölçülmüştür. Turp tohumları kontrol, 100 mM, 150 mM ve 200 mM tuz konsantrasyonlarında çimlenmeye tabi tutulmuştur. Tuz stresi çimlenmeyi yüksek oranda inhibe etmemiş ancak bitkilerin vejetatif gelişimlerini olumsuz etkilemiştir. Elde edilen verilerin istatistik analiz sonuçlarına göre 150 mM eşik değer olarak belirlenmiştir. Daha sonra 150 mM tuz konsantrasyonu uygulanan tohumlara farklı dozlarda (0,25, 0,50, 0,75, 1,00 mM) SA ilavesi yapılmış ve çimlenme yüzdeleri açısından tüm çeşitlerde 0,50 mM SA uygulanabileceği sonucuna ulaşılmıştır. Bununla birlikte 1 mM SA uygulaması iri kırmızı ve kırmızı fındık turp çeşitlerinde çimlenmeyi inhibe etmiş, ani ve ciddi çimlenme kayıplarına neden olmuştur (%10, %8, sırasıyla). SA’in vejetatif gelişim parametreleri üzerine olan etkileri çeşide göre farklılık göstermiş olup, beyaz turp çeşidinde vejetatif gelişim özellikleri açısından inhibe edici olduğu belirlenmiştir. Diğer taraftan siyah ve iri kırmızı turp çeşitlerinde 0,50 mM, kırmızı fındık turp çeşidinde ise 0,75 mM SA uygulaması vejetatif gelişim açısından olumlu sonuç vermiştir.

Determination of Salt Tolerance Levels of Some Radish Cultivars and Evaluation of the Effectiveness of Salicylic Acid on Germination in Saline Conditions#

This study was conducted to determine tolerance levels of different radish varieties (white, black, red, little red radish) under salt stress conditions and to evaluate the effectiveness of exogenous salicylic acid (SA) application on germination and vegetative development. For this purpose; germination percentage (%), germination time (day), germination index calculated, and then number of leaves, shoot length (cm), root length (cm), leaf width (cm), leaf length (cm), stem diameter (mm), plant fresh and dry weights (g) were measured. Radish seeds were germinated at control, 100 mM, 150 mM and 200 mM salt concentrations. Salt stress did not inhibit germination at a high level but negatively affected the vegetative growth of plants. According to the results of the statistical analysis of the data obtained, 150 mM was determined as the threshold value. Then, SA was applied to seeds treated with 150 mM salt concentration at different doses (0.25, 0.50, 0.75, 1.00 mM). SA had a positive effect on germination in saline conditions in general and it was concluded that 0.50 mM SA could be applied for germination percentages in all cultivars. However, 1 mM SA inhibited the germination of big red and little red radish cultivars, causing sudden and severe germination losses (10%, 8%, respectively). The effects of SA on vegetative growth parameters differed by cultivar and it was found to be inhibitory in terms of vegetative growth characteristics of white radish cultivar. On the other hand, 0.50 mM SA in black and big red, 0.75 mM SA in little red cultivar gave promoting results for vegetative growth.

___

  • Adams P. 1991. Effects of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. Journal of Horticultural Science, 66: 201–207.
  • Chaparzadeh, N, Hosseinzad-Behboud E. 2015. Evidence for enhancement of salinity induced oxidative damages by salicylic acid in radish (Raphanussativus L.). Journal of Plant Physiology and Breeding, 5(1): 23-33.
  • Coopland OL, McDonald MB. 1995. Seed science and technology. 3rd Edn. Chapman and Hall. New York, pp: 240.
  • Ellis RH, Roberts EH. 1981. The Quantification of Ageing and Survival in Orthodox Seeds. Seed Science and Technology, 9: 373-409.
  • Gosh P, Dash PK, Rituraj S, Mannan MA. 2014. Effect of salinity on germination, growth and yield of radish (Raphanus sativus L.) varieties. International Journal of Biosciences, 5(1): 37- 48.
  • ISTA 1985. International Rules for Seed Testing. Seed Science Technology 13.
  • Jamil M, Rehman S, Lee KJ, Kim JM, Kim HS, Rha ES. 2007. Salinity reduced growth ps2 photochemistry and chlorophyll content in radish. Scientia Agricola, 64(2): 111-118.
  • Jasim AH, Al Timmen WMA, Abid AS. 2016. Effect ofsalt stress on plant growth and free endogenous hormones of primed radish (Raphanus sativus L.) seeds with salicylic acid. International Journal of ChemTech Research, 9(6): 339-346.
  • Kalantari H, Kooshapur H. Rezaii F, Ranjbari N, Moosavi M. 2009. Study of the protective effect of Raphanus sativus (radish), seed in liver toxicity induced by carbon tetrachloride in mice. Jundishapur Journal of Natural Pharmaceutical Products, 4: 24‒31.
  • Karim Z, Hussain SG, Ahmed M. 1990. Salinity problems and crop intensification in the coastal regions of Bangladesh. Seminar proceedings on BARC (Bangladesh Agricultural Research Council). Dhaka, 1.
  • Klessig DF, Malamy J. 1994. The salicylic acid signal in plants. Plant molecular biology, 26(5): 1439-1458.
  • Larry KH. 1977. Commercial vegetables crops development of Horticulture. Washington State University, Pullmar, Washington. American Journal of Horticulture, 99(2): 164.
  • Maas EV, Hoffman GJ. 1977. Crop salt tolerance - Current assessment. Netherland Journal of Irrigation and Drainage, 103(2): 115–134.
  • Marcelis LFM, Van Hooijdonk J. 1999. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil, 215(1): 57-64.
  • Mehdy MC. 1994. Active oxygen species in plant defense against pathogens. Plant physiology, 105(2): 467.
  • Munir S, Siddiqi EH, Bhatti KH, Nawaz K, Hussain K, Rashid R, Hussain, I. 2013. Assessment of inter-cultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. World Applied Sciences Journal, 21(3): 384-388.
  • Panwar P, Bhardwaj SD. 2005. Handbook of practical forestry. Agrobios (India).
  • Santner A, Estelle M. 2010. The ubiquitin-proteasome system regulates plant hormone Signalling. The Plant Journal, 61: 1029–1040.
  • Senaratna T, Touchell D, Bunn E, Dixon K. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30(2): 157-161.
  • Sivritepe HÖ. 2012. Tohum Gücünün Değerlendirilmesi. Alatarım Dergisi, 11(2), 33-44.
  • Sonneveld C. 1988. Salt tolerance of greenhouse crops. Netherlands Journal of Agricultural Science. 36: 63–73.
  • William MJR. 1986. The national and international drought and salinity effects on agricultural production. Australian Journal of Plant Physiology. 13, 1-3.
  • Yildirim E, Turan M, Donmez F. 2008. Mitigation of salt stress in radish (Raphanus Sativus L.) by plant growth promoting rhizobacteria. Romanian Biotechnological Letters,1395: 3933-3943.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)