Arpa Nikotinamin Sentaz1 (HvNAS1) Genini Yüksek Seviyede İfade Eden Arabidopsis thaliana Bitkileri Demir Eksikliğine Dayanıklılık Gösterir

Demir (Fe) bitki gelişimi için önemli bir eser element olup, Fe eksikliğinde yetişen bitkilerde gelişen kloroza bağlı olarak verim kayıpları yaşanır. Bu kayıpların en aza indirilebilmesi için alınabilecek agronomik önlemlere ilaveten genetik mühendisliği aracılığıyla bitkilerin özellikleri etkin bir şekilde geliştirilebilir. Rizosferde yüksek miktarda bulunan demiri köklerine alabilmek için Arabidopsis thalianagibi dikotlar indirgenme temelli bir stratejiyi kullanırlarken, arpanın (Hordeum vulgare) da yer aldığı graminelerde şelasyon stratejisi evrimleşmiştir. Bu çalışmada, arpada bulunan ve demir ile kompleks oluşturabildiği bilinen nikotinaminin üretiminden sorumlu NİKOTİNAMİN SENTAZ1(HvNAS1) geni klonlanarak, Arabidopsis bitkilerinde konstitütif olarak yüksek seviyede ifade edilmiştir. Elde edilen T3Arabidopsis bitkilerinde HvNAS1ile birlikte demir alımından sorumlu yolakta yer alan Arabidopsis genlerinin de ifade seviyelerinin arttığı belirlenmiştir. Buna bağlı olarak, bitkilerin kök uzunluklarının, kök ve gövde yaş ağırlıklarının, ferrik şelat redüktaz enzim aktivitelerinin de arttığı belirlenmiştir.Ayrıca, transgenik Arabidopsis bitkilerinin kök ve gövdelerinde biriken demir ve çinko seviyelerinde önemli artışlar belirlenmiştir. Sonuç olarak, arpa HvNAS1genini yüksek seviyede ifade eden trangenik Arabidopsis bitkilerinin rizosferden daha fazla demir alabildiği ve bu demiri daha fazla gövdeye taşıyabildiği gösterilmiştir. Bu sayede genetik mühendisliği kullanılarak HvNAS1genini yüksek seviyede ifadeeden ve demir eksikliğine dayanıklı Arabidopsis bitkileri geliştirilmiştir.

Arabidopsis thalianaPlants Overexpressing the Barley Nicotinamine Synthase1(HvNAS1) Gene Show Tolerance to Iron Deficiency

Iron (Fe) is an important trace mineral for plant development, and plants grown in Fe deficiency experience yield losses due to the leaf chlorosis. In addition to agronomic measures that can be taken to minimize these losses, new plant genotypes can be developed effectively through genetic engineering. While dicots such as Arabidopsis thalianause a reduction-based strategy to uptake high amounts of iron from the rhizosphere, the chelation strategy has evolved in Gramineous plants including barley (Hordeum vulgare). In this study, barley NICOTIANAMINE SYNTHASE1(HvNAS1) gene, which is responsible for the production of nicotianamine that can complex with iron, was cloned and expressed at a constitutive high level in Arabidopsis plants. The expression levels of Arabidopsis genes encoding for the proteins involved in iron uptake increased together with HvNAS1in the T3Arabidopsis plants. Moreover, the root lengths, root and stem fresh weights, ferric chelate reductase enzyme activities of the plants also increased in the transgenic Arabidopsis plants under Fe deficiency. In addition, significant increases in iron and zinc levels were determined in the roots and shoots of transgenic Arabidopsis plants. As a result, transgenic Arabidopsis plants overexpressing thebarley HvNAS1gene can take up more iron from the rhizosphere and carry this iron to the shoots. This study demonstrates the power of genetic engineering to develop Arabidopsis plants overexpressing the HvNAS1gene and therefore tolerate iron deficiency.

___

Aksoy E, Jeong IS, Koiwa H. 2013. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiol. 161: 330-345. DOI: https://doi.org/10.1104/ pp.112.207043.

Amir R, Hacham Y, Galili G. 2002. Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci 7: 153-156. DOI: https://doi.org/10.1016/S1360-1385(02)02227-6.

Anjum NA, Umar S, Singh S, Nazar R, Khan NA. 2008. Sulfur assimilation and cadmium tolerance in plants. (Khan, Singh and Umar) Sulfur assimilation and abiotic stress in plants. Springer. Netherlands. ss: 271-302. 978-3-540-76326-0

Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2006. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Journal of Biological Chemistry 281: 32395-32402.

Blair MW, Knewtson SJB, Astudillo C, Li C-M, Fernandez AC, Grusak MA. 2010. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol. 10: 215. DOI: https://doi.org/10.1186/1471-2229- 10-215.

Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao F-J, Ueno D, Ma JF. 2007. Mutation in nicotianamine aminotransferase stimulated the Fe (II) acquisition system and led to iron accumulation in rice. Plant Physiol. 145: 1647- 1657. DOI: https://doi.org/10.1104/pp.107.107912.

Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML. 2003. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 133(3): 1102-1110. DOI: https://doi.org/10.1104/pp.103.025122.

Connolly EL, Fett JP, Guerinot ML. 2002 Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell. 14: 1347- 1357. DOI: https://doi.org/10.1105/tpc.001263.

Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M, Misson J, Schikora A, Czernic P, Mari S. 2009. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 103: 1-11. DOI: https://doi.org/10.1093/aob/mcn207.

Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Brait JF, Walker EL. 2001. Maize yellow stripe1 encodes a membrane protein directly involved in Fe3+ uptake. Nature. 409: 346– 349. DOI: https://doi.org/10.1038/35053080.

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139: 5-17. DOI: https://doi.org/10.1104/ pp.105.063743.

Eide D, Broderius M, Fett J, Guerinot ML. 1996. A novel ironregulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A. 93(11): 5624- 5628. DOI: https://doi.org/10.1073/ pnas.93.11.5624.

Grusak MA, Welch RM, Kochian LV. 1990. Does iron deficiency in Pisum sativum enhance the activity of the root plasmalemma iron transport protein. Plant Physiol. 94: 1353– 1357. DOI: https://doi.org/10.1104/pp.94.3.1353.

Hell R, Stephan UW. 2003. Iron uptake, trafficking and homeostasis in plants. Planta. 216: 541-551. DOI: https://doi.org/10.1007/s00425-002-0920-4.

Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 119: 471-480. DOI: https://doi.org/10.1104/pp.119.2.471.

Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S. 2001. Nicotianamine synthase gene expression differs in barley and rice under Fe‐deficient conditions. Plant J. 25: 159-167. DOI: https://doi.org/10.1111/ j.1365-313X.2001.00951.x.

Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347 (2. edition).

Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2003. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long‐distance transport of iron and differentially regulated by iron. Plant J. 36(3): 366-381. DOI: https://doi.org/10.1046/j.1365-313X.2003.01878.x.

Jeong J, Connolly EL. 2009. Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci. 176: 709-714. DOI: https://doi.org/10.1016/j.plantsci.2009.02.011.

Kim SA, Guerinot ML. 2007. Mining iron: Iron uptake and transport in plants. Febs Lett. 581: 2273-2280. DOI: https://doi.org/10.1016/j.febslet.2007.04.043.

Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa N-K, Mori S. 2001. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta. 212: 864-871. DOI: https://doi.org/10.1007/s004250000453.

Kobayashi T, Nishizawa NK. 2012. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63: 131-152. DOI: https://doi.org/10.1146/annurev-arplant- 042811-105522.

Li W, Santi S, Tan C, WS. 2007. Dissecting P-type H+-ATPasemediated proton extrusion in Arabidopsis. In 18th International Conference on Arabidopsis Research, Beijing, China.

Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. 2010. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell. 22(7): 2219-2236. DOI: https://doi.org/10.1105/tpc.110.074096.

Ma JF, Taketa S, Chang YC, Iwashita T, Matsumoto H, Takeda K, Nomoto K. 1999. Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta. 207(4): 590-596. DOI: https://doi.org/10.1007/s004250050522.

Marschner H, Marschner P. 2012. Marschner’s mineral nutrition of higher plants. Academic Press. London, Waltham, MA. ISBN: 978-0-12-384905-2.

Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK. 2003. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 132(4): 1989-1997. DOI: https://doi.org/10.1104/pp.102.019869.

Mori S, Nishizawa N. 1987. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol. 28:1081–92. DOI: https://doi.org/10.1093/ oxfordjournals.pcp.a077388.

Muller PY, Janovjak H, Miserez AR, Dobbie Z. 2002. Short technical report processing of gene expression data generated by quantitative Real-Time RT-PCR. Biotechniques. 32: 1372-1379.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.

Nakanishi H, Okumura N, Umehara Y, Nishizawa NK, Chino M, Mori S. 1993. Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Plant Cell Physiol. 34: 401–410. DOI: https://doi.org/10.1093/ oxfordjournals.pcp.a078434.

Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S. 2000. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol. Biol. 44: 199-207. DOI: https://doi.org/10.1023/A:1006491521586.

Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T, Chino M, Mori S. 1994. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol. Biol. 25: 705-719.

Palmer CM, Guerinot ML. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 5: 333-340. DOI:10.1038/nchembio.166.

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29: e45-e45. DOI: https://doi.org/10.1093/nar/29.9.e45.

Ravanel S, Droux M, Douce R. 1995. Methionine Biosynthesis in Higher-Plants. 1. Purification and Characterization of Cystathionine γ-Synthase from Spinach Chloroplasts. Arch. Biochem. Biophys. 316: 572-584. DOI: https://doi.org/ 10.1006/abbi.1995.1077.

Robinson NJ, Procter CM, Connolly EL, Guerinot ML. 1999. A ferric-chelate reductase for iron uptake from soils. Nature 397: 694-697. DOI: https://doi.org/10.1038/17800.

Satbhai SB, Setzer C, Freynschlag F, Slovak R, Kerdaffrec E, Busch W. 2017. Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency. Nat. Commun. 8(1): 1-10. DOI: https://doi.org/10.1038/ ncomms15603.

Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S. 1990. Biosynthesis of phytosiderophores: in vitro biosynthesis of 2 -deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol. 93:1497–503. DOI: https://doi.org/10.1104/pp.93.4.1497.

Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK. 2008. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci. Plant. Nutr. 54: 77-85. DOI: https://doi.org/10.1111/j.1747-0765.2007. 00205.x.

Takagi S. 1976. Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity Measurement and Preliminary Characterization. Soil Sci. Plant. Nutr. 22: 423- 433. DOI: https://doi.org/10.1080/00380768.1976.10433004.

Takagi S., Nomoto K, Takemoto T. 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant. Nutr. 7: 469-477. DOI: https://doi.org/ 10.1080/01904168409363213.

Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S. 2001. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnol. 19. 466–469. DOI: https://doi.org/10.1038/88143.

Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa N-K, Mori S. 1999. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol. 121: 947- 956. DOI: DOI: https://doi.org/10.1104/pp.121.3.947.

Takizawa R, Nishizawa NK, Nakanishi H, Mori S. 1996. Effect of iron deficiency on S-adenosyl-methionine synthetase in barley roots. J. Plant. Nutr. 19: 1189–1200. DOI: https://doi.org/10.1080/01904169609365190.

Thomine S, Vert G. 2011. Iron transport and signaling in plants. (Geisler, Venema) Transporters and pumps in plant signaling. Berlin Heidelberg. Springer. ss: 99-131. ISBN: 978-3-642- 14368-7.

Ueno D, Rombola AD, Iwashita T, Nomoto K, Ma JF. 2007. Identification of two new phytosiderophores secreted by perennial grasses. New Phytol. 174:304–310. DOI: https://doi.org/10.1111/j.1469-8137.2007.02056.x.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40(15): e115-e115. DOI: https://doi.org/10.1093/nar/gks596.

Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T. 2006. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 224: 1116–1128. DOI: https://doi.org/10.1007/s00425-006-0293-1.

Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 14: 1223-1233. DOI: https://doi.org/ 10.1105/tpc.001388.

White JP. 2012. Ion Uptake Mechanisms of Individual Cells and Roots: Short-distance Transport (Marschner, Marschner) In Marschner’s Mineral Nutrition of Higher Plants (3rd. Ed) Academic Press. London, Waltham, MA. ss: 7-47. ISBN: 978-0-12-384905-2.

White PJ, Brown PH. 2010. Plant nutrition for sustainable development and global health. Annals Bot. 105: 1073-1080. DOI: https://doi.org/10.1093/aob/mcq085.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Tokat İlinde Tütün Yetiştiriciliği Yapılan Arazilerin Verimlilik Durumu ve Toprak Özelliklerinin Alansal Dağılımı

Hikmet GÜNAL, Elif GÜNAL

Süt Sağım Ünitelerinin Sağmal İnek Ahırlarından Ayrı Bir Çatı Altında Planlanma Koşulları: Örnek Bir Süt Sağım Ünitesi Projesi

Unal ŞİRİN, Sedat KARAMAN, Fatih Mehmet KIZILOĞLU

Management of Erwinia amylovoraby Potential Bio-Pesticides in vitroand in vivo Conditions

KUBİLAY KURTULUŞ BAŞTAŞ

Kanatlı Hayvan Beslemede Antimikrobiyal Peptidlerin Kullanılabilirliği

Şenay SARICA, Öznur DÖNMEZ

Arpa Nikotinamin Sentaz1 (HvNAS1) Genini Yüksek Seviyede İfade Eden Arabidopsis thaliana Bitkileri Demir Eksikliğine Dayanıklılık Gösterir

Emre AKSOY, Amir MAQBOOL, Buasimuhan ABUDUREYİMU

Organik ve İnorganik Gübre Uygulamalarının Karabuğday Verimi ve Mikro Element Beslenmesine Etkisi

Umur ÇÜRÜK, Mehmet IŞIK, Elif FERAHOĞLU, SALIHA KIRICI, İBRAHİM ORTAŞ

Yerel Lice Tütününün Genetik Kaynak Olarak Bazı Bitkisel ve Kalite Özelliklerinin Araştırılması

Aydın ALP, Özlem TONCER, SADETTİN ÇELİK

Kraliçe (Ana) Arı Kalitesini Etkileyen Faktörler

Mustafa GÜNEŞDOĞDU, Ahmet ŞEKEROĞL

Covid-19 Sürecinde S.Ü. Peyzaj Mimarlığı Bölümü Öğrencileri Uzaktan Eğitim Deneyimi Kapsamında Bir Değerlendirme Çalışmas

SERTAÇ Güngör, Esra SİVRİ

Fasulye Bakteriyel Adi Yaprak Yanıklığı Hastalığına Karşı Farklı Bor Bileşiklerinin Etkileri

Ayşegül GEDÜK, KUBİLAY KURTULUŞ BAŞTAŞ, Şaban KORDALİ, FERAH YILMAZ