Analysis of Clade V MLO Gene Expressions in Hazelnut Leaves during Exposure to Powdery Mildew

Analysis of Clade V MLO Gene Expressions in Hazelnut Leaves during Exposure to Powdery Mildew

Text Powdery mildew affecting European hazelnut Corylus avellana L. in Turkey is caused by the obligate biotrophic fungus Erysiphe corylacearum. This fungal disease causes significant economic losses by reducing the yield and quality of hazelnuts. Loss-of-function mutations in the mildew resistance locus o (MLO) gene family of many plants confer high levels of broad-spectrum resistance to powdery mildew. The proteins encoded by the genes at the MLO locus are divided into approximately seven different conserved clades. Among them, phylogenetic clade V has been found to be involved in PM susceptibility, as inactivation of these genes leads to long-term disease resistance in dicots. In this study, we examined the temporal expression pattern of three hazelnut MLO genes, previously identified as clade V, in response to powdery mildew infection in C. avellana cv. Tombul. Leaves are the main tissue affected by the powdery mildew pathogen in hazelnut plants. Analysis of MLO expression in hazelnut leaves showed that CavMLO2 and CavMLO6 were significantly upregulated after challenge with E. corylacearum, providing preliminary evidence that they may be involved in PM susceptibility. Thus, these results present a basis for the isolation and use of relevant genes in plant breeding for disease resistance. In addition, gene expression profiles of clade V MLO are also important for identifying candidate genes that need to be silenced or modified for future molecular studies to obtain resistant hazelnut varieties.

___

  • Acevedo-Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond-Kosack K, Phillips AL, Panstruga R. 2017. mlo- based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnology Journal, 15: 367-378. doi: 10.1111/pbi.12631
  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, de Giovanni C, Ricciardi L, Lindhout P, Visser RGF, Theres K, Panstruga R. 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Molecular Plant-Microbe Interactions, 21: 30-39. doi: 10.1094/MPMI-21-1-0030
  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88: 695–705. doi: 10.1016/S0092-8674(00)81912-1
  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel JP, Lipka V, Kemmerling B, Schulze- Lefert P, Somerville SC, Panstruga R. 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38:716-720. doi: org/10.1038/ng1806
  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry, 274: 34993-5004. doi: 10.1074/jbc.274.49.34993
  • Gaj T, Gersbach CA, Barbas CF III. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31:397-405. doi: 10.1016/j.tibtech.2013.04.004
  • Jorgensen JH. 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 66: 141–152. doi: 10.1007/BF00023919
  • Kavas M, Kurt Kızıldoğan A, Balık Hİ. 2019. Gene expression analysis of bud burst process in European hazelnut (Corylus avellana L.) using RNA-Seq. Physiology and Molecular Biology of Plants, 25: 13–29. doi: 10.1007/s12298-018-0588-2
  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P. 2002. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 416: 447–451. doi: 10.1038/ 416447a
  • Kusch S, Panstruga R. 2017. mlo-Based Resistance: An Apparently Universal "Weapon" to Defeat Powdery Mildew Disease. Molecular Plant-Microbe Interactions, 30: 179-189. doi: 10.1094/MPMI-12-16-0255-CR
  • Lozano-Juste J, Cutler SR. 2014. Plant genome engineering in full bloom. Trends in Plant Science 19: 284-7. doi: 10.1016/j.tplants.2014.02.014
  • Lucas SJ, Sezer A, Boztepe Ö, Budak H. 2018. Genetic analysis of powdery mildew disease in Turkish hazelnut. Acta Horticulturae, 1226: 413–420. doi: 10.17660/actahortic. 2018.1226.63
  • Lucas SJ, Kahraman K, Avsar B, Buggs RJA, Bilge I. 2021. A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. The Plant Journal, 105: 1413–1430. doi: 10.1111/tpj.15099
  • Pessina S, Pavan S, Catalano D, Gallotta A, Visser RGF, Bai Y, Malnoy M, Schouten HJ. 2014. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics, 15: 618. doi: 10.1186/ 1471-2164-15-618
  • Pessina S, Angeli D, Martens S, Visser RGF, Bai Y, Salamini F, Velasco R, Schouten HJ, Malnoy M. 2016a. The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica). Plant Biotechnology Journal, 14: 2033-2044. doi: 10.1111/pbi.12562
  • Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Valè G, Salamini F, Velasco R, Malnoy M. 2016b. Knock- down of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Research, 3: 16016. doi: 10.1038/hortres.2016.16
  • Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R. 2004. A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature, 430: 887–891. doi: 10.1038/nature02781
  • Puchta H, Fauser F. 2014. Synthetic nucleases for genome engineering in plants: prospects for a bright future. The Plant Journal, 78: 727-41. doi: 10.1111/tpj.12338
  • Sezer A, Dolar FS, Lucas SJ, Köse Ç, Gümüş E. 2017. First report of the recently introduced, destructive powdery mildew Erysiphe corylacearum on hazelnut in Turkey. Phytoparasitica, 45: 577–581. doi: 10.1007/s12600-017- 0610-1
  • Wan DY, Guo Y, Cheng Y, Hu Y, Xiao S, Wang Y, Wen YQ. 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticultural Resistance, 1: 7:116. doi: 10.1038/s41438-020-0339-8
  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32: 947-951. doi: 10.1038/nbt.2969
  • Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters AMA, Visser RGF, Bai Y. 2013. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One, 8: e70723. doi: 10.1371/journal.pone.0070723