Aşı epidemiyolojisi: Gözlemsel aşı güvenliliği çalışma tasarımları

Bir aşı programının bir toplumda uygulanmaya başlanmasından itibaren aşının etkililiğinin izlemi kadar önemli bir husus da aşı güvenliliğinin izlemidir. Her ne kadar ruhsat öncesi dönemde güvenliliği kanıtlanmış olsa da, toplumda uygulanan aşının güvenliliği ile ilgili endişeler devam edebilir. Aşı programı sürerken toplumun aşı güvenliliği ile ilgili sorularına aşı etkililiği ile ilgili sorulardan daha çabuk yanıt vermek gerekebilir. Farmakovijilans raporları ve aktif sürveyans yoluyla ortaya çıkacak bu endişelerin gözlemsel epidemiyolojik çalışma tasarımları ile giderilmesi veya doğrulanması önemlidir. Ayrıca ruhsat öncesi tespit edilmiş advers etkiler de daha doğru ve kesin bir şekilde belirlenmelidir. Bu nedenle aşı güvenliliğinin gözlemsel çalışmalarla izlenmesi aşı programlarının bir parçası olmalıdır. Geleneksel kohort ve olgu kontrol çalışmalarında yüksek aşı kapsayıcılığı nedeniyle aşısız grup bulmanın ve aşılılar ve aşısızlar arasında karşılaştırılabilirliği sağlamanın zorluğu gibi nedenlerle aşı güvenliliğinin ruhsat sonrası dönemde incelenmesi için alternatif tasarımlar geliştirilmiştir. Ancak aşılamanın uzun dönem advers etkilerinin değerlendirilmesi, kısa dönemde görülen advers etkilerinin değerlendirilmesinden daha zordur. Çünkü aşının uzun dönemdeki advers etkileri yalnızca aşılı ve aşısızların izlenerek karşılaştırılması ile belirlenebilir. Aşı güvenliliğini değerlendirmek için geleneksel gözlemsel çalışma tasarımlarına alternatif olarak kullanılan çalışma tasarımları ise daha çok kısa dönemde ortaya çıkan ve özellikle nadir advers etkilerin değerlendirilmesini sağlamaktadırlar. Bu tasarımlar; ‘risk aralığı tasarımı’, ‘kendi kendine kontrollü risk aralığı tasarımı’, ‘kendi kendine kontrollü olgu serisi tasarımı’, ‘olgu merkezli yaklaşım’, ‘olgu çaprazlama tasarımı’, ‘olgu zaman kontrol tasarımı’, ‘olgu kapsayıcılık tasarımı’, ‘ekolojik çalışmalar’ olarak sayılabilir. Aşı güvenliliği çalışmasında cevap aranan soruya ve mevcut veri kaynaklarına göre bu geleneksel ve alternatif tasarımlar arasından uygun olanın seçilmesi doğru çıkarımlar yapılabilmesi açısından gereklidir. Bu nedenle aşı güvenliliği çalışma tasarımlarının kısıtlılıkları, güçlü yönleri ve varsayımları mutlaka bilinmeli ve göz önünde bulundurulmalıdır.

Vaccine epidemiology: Observational vaccine safety study designs

After a vaccine programme introduced into a population, vaccine safety monitoring is an important issue as much as vaccine effectiveness monitoring. Concerns about vaccine safety may continue in a population after licensure, although vaccine safety was proven before licensure. While a vaccination programme implemented, it may need to respond questions about vaccine safety more quickly than questions about vaccine effectiveness. These concerns that will be revealed by pharmacovigilance reports and active surveillance should be eliminated or verified. In addition adverts events that were detected before licensure should be shown more accurately and more precisely. Therefore vaccine safety monitoring with observational studies should be a part of a vaccine programme. In traditional cohort and case-control studies finding unvaccinated groups is difficult due to high vaccine coverage and providing comparability between vaccinated and unvaccinated groups is rarely possible. Therefore alternative study designs have been developed for vaccine safety monitoring at post-licensure stage. However evaluation of long term adverse events associated with vaccines is more difficult than evaluation of short term adverse events. Long term adverse events can only be determined with studying vaccinated and unvaccinated groups over a period of time and comparing them. However alternative designs are used for investigation of short term and rare adverse events. The alternative vaccine safety study designs are ‘risk interval design’, ‘selfcontrolled risk interval design’, ‘self-controlled case series method’, ‘case-centered approach’, ‘casecrossover design’, ‘case-time-control design’, ‘casecoverage design’ and ‘ecologic studies’. According to the question sought in the vaccine safety study and available data sources, choosing the appropriate one from among these traditional and alternative designs is necessary to make correct conclusions. Therefore limitations, strenghts and assumptions of the vaccine safety study designs should be necessarily known and considered.

___

  • 1. Andrews N. Epidemiological designs for vaccine safety assessment: methods and pitfalls. Biologicals, 2012; 40(5): 389-92.
  • 2. Andrews NJ. Statistical assessment of the association between vaccination and rare adverse events post-licensure. Vaccine, 2001; 20 (Suppl 1): 49-53.
  • 3. Li R, Stewart B, Weintraub E. Evaluating efficiency and statistical power of selfcontrolled case series and self-controlled risk interval designs in vaccine safety. J Biopharm Stat, 2015; 1-8.
  • 4. Baker MA, Lieu TA, Li L, Hua W, Qiang Y, Kawai AT, et al. A vaccine study design selection framework for the postlicensure rapid immunization safety monitoring program. Am J Epidemiol, 2015; 181(8): 608-18.
  • 5. Jefferson T, Price D, Demicheli V, Bianco E; European Research Program for Improved Vaccine Safety Surveillance (EUSAFEVAC) Project. Unintended events following immunization with MMR: a systematic review. Vaccine, 2003; 21(25-26) :3954-60.
  • 6. Cecinati V, Principi N, Brescia L, Giordano P, Esposito S. Vaccine administration and the development of immune thrombocytopenic purpura in children. Hum Vaccin Immunother, 2013; 09(5): 1158-62.
  • 7. Nordin JD, Kharbanda EO, Vazquez-Benitez G, Lipkind H, Lee GM, Naleway AL. Monovalent H1N1 influenza vaccine safety in pregnant women, risks for acute adverse events. Vaccine, 2014; 32(39): 4985-92.
  • 8. Greene SK, Kulldorff M, Yin R, Yih WK, Lieu TA, Weintraub ES, et al. Near real-time vaccine safety surveillance with partially accrued data. Pharmacoepidemiol Drug Saf, 2011; 20(6): 583-90.
  • 9. Wilson K, Hawken S, Kwong JC, Deeks S, Crowcroft NS, Van Walraven C, et al. Adverse events following 12 and 18 month vaccinations: a population-based, self-controlled case series analysis. PLoS One, 2011; 6(12): e27897.
  • 10. dos Santos Silva I. Cancer epidemiology: principles and methods. International Agency for Research on Cancer. Geneva: World Health Organization,1999.
  • 11. Gordis L. Epidemiology (Fifth edition). Philadelphia: Elsevier/Saunders, 2009.
  • 12. Glanz JM, McClure DL, Xu S, Hambidge SJ, Lee M, Kolczak MS, et al. Four different study designs to evaluate vaccine safety were equally validated with contrasting limitations. J Clin Epidemiol, 2006; 59(8): 808-18.
  • 13. Shui IM, Baggs J, Patel M, Parashar UD, Rett M, Belongia EA, et al. Risk of intussusception following administration of a pentavalent rotavirus vaccine in US infants. JAMA. 2012; 307(6): 598-604.
  • 14. Irving SA, Kieke BA, Donahue JG, Mascola MA, Baggs J, DeStefano F, et al. Trivalent inactivated influenza vaccine and spontaneous abortion. Obstet Gynecol, 2013; 121(1): 159-65.
  • 15. Taylor B, Lingam R, Simmons A, Stowe J, Miller E, Andrews N. Autism and MMR vaccination in North London; no causal relationship. Mol Psychiatry, 2002; 7 (Suppl 2) :7-8.
  • 16. Confavreux C, Suissa S, Saddier P, Bourdès V, Vukusic S; Vaccines in Multiple Sclerosis Study Group. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med, 2001; 344(5): 319-26.
  • 17. France EK, Glanz JM, Xu S, Davis RL, Black SB, Shinefield HR, et al. Safety of the trivalent inactivated influenza vaccine among children: a population-based study. Arch Pediatr Adolesc Med, 2004; 158(11): 1031-6.
  • 18. Yih WK, Lieu TA, Kulldorff M, Martin D, McMahill- Walraven CN, Platt R, et al. Intussusception risk after rotavirus vaccination in U.S. infants. N Engl J Med, 2014; 370(6): 503-12.
  • 19. Rowhani-Rahbar A, Klein NP, Lewis N, Fireman B, Ray P, Rasgon B, et al. Immunization and Bell’s palsy in children: a case-centered analysis. Am J Epidemiol, 2012; 175(9): 878-85.
  • 20. Fine PE, Chen RT. Confounding in studies of adverse reactions to vaccines. Am J Epidemiol, 1992; 136(2): 121-35.
  • 21. France EK, Glanz J, Xu S, Hambidge S, Yamasaki K, Black SB, et al. Team. Risk of immune thrombocytopenic purpura after measlesmumps- rubella immunization in children. Pediatrics, 2008; 121(3): e687-92.
  • 22. Weldeselassie YG, Whitaker HJ, Farrington CP. Use of the self-controlled case-series method in vaccine safety studies: review and recommendations for best practice. Epidemiol Infect, 2011; 139(12): 1805-17.
  • 23. Farrington CP. Control without separate controls: evaluation of vaccine safety using case-only methods. Vaccine, 2004; 22(15-16): 2064-70.
  • 24. Asghar Z, Coupland C, Siriwardena N. Influenza vaccination and risk of stroke: Self-controlled case-series study. Vaccine, 2015; 33(41): 5458-63.
  • 25. Qian L, Tseng HF, Sy LS, Jacobsen SJ. Confounder adjustment in vaccine safety studies: comparing three offset terms for case-centered approach. Vaccine, 2013; 31(2): 431-5.
  • 26. Fireman B, Lee J, Lewis N, Bembom O, van der Laan M, Baxter R. Influenza vaccination and mortality: differentiating vaccine effects from bias. Am J Epidemiol, 2009; 170(5): 650-6.
  • 27. Hekimoğlu CH. Aşı epidemiyolojisi: Aşı etkililiği için epidemiyolojik çalışma tasarımları. Turk Hij Den Biyol Derg, 2016; 73(2): 161-74.
  • 28. Klein NP, Fireman B, Yih WK, Lewis E, Kulldorff M, Ray P, Baxter al. Measles-mumps-rubellavaricella combination vaccine and the risk of febrile seizures. Pediatrics, 2010; 126(1): e1-8.
  • 29. Tseng HF, Liu A, Sy L, Marcy SM, Fireman B, Weintraub E, et al. Safety of zoster vaccine in adults from a large managed-care cohort: a Vaccine Safety Datalink study. J Intern Med, 2012; 271(5): 510-20.
  • 30. Baxter R, Lewis E, Fireman B, DeStefano F, Gee J, Klein NP. Case-centered Analysis of Optic Neuritis After Vaccines. Clin Infect Dis, 2016. pii: ciw224.
  • 31. Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991; 133(2): 144-53.
  • 32. Suissa S, Delaney JA. The case-crossover study design in pharmacoepidemiology. Stat Methods Med Res, 2008; 9(1): 1-13.
  • 33. Suissa S. The case-time-control design. Epidemiology, 1995; 6(3): 248-53.
  • 34. Hernández-Díaz S, Hernán MA, Meyer K, Werler MM, Mitchell AA. Case-crossover and case-timecontrol designs in birth defects epidemiology. Am J Epidemiol, 2003 Aug 15; 158(4): 385-91.
  • 35. Kawai A, Li L, Andrade S, Nguyen M, Selvan M, Lin N, et al. Influenza vaccines and birth outcomes.http://www.mini-sentinel.org/work_ products/PRISM/Mini-sentinel_PRISM_Influenza- Vaccines-and-Birth-Outcomes-Protocol.pdf. 25 Şubat 2013. Published February 25, 2013. Erişim 18 Mayıs 2016.
  • 36. Farrington CP. Estimation of vaccine effectiveness using the screening method.Int J Epidemiol, 1993; 22(4): 742–6.
  • 37. Dourado I, Cunha S, Teixeira MG, Farrington CP, Melo A, Lucena R, et al. Outbreak of aseptic meningitis associated with mass vaccination with a urabe-containing measles-mumpsrubella vaccine: implications for immunization programs. Am J Epidemiol, 2000; 151(5): 524- 30.