Sarkoidoz ve tüberküloz lenfadenit ayrımında doku element analizi kullanılabilir mi?

Giriş: Sarkoidoz ve tüberküloz lenfadenit, granülomatöz inflamasyon oluşturan hastalıklardır. Bu iki hastalığın lenf bezi tutulumunun ayrımı bazı durumlarda güç olmaktadır. Bu çalışma, histopatolojik ve klinik olarak ayırıcı tanısında güçlük yaşayabildiğimiz bu hastalıklarda alınan doku örneklerinde çalışılan elementlerin hastalıkların ayrımına katkıda bulunup bulunmayacağını tespit etmek amacıyla yapılmıştır. Materyal ve Metod: Çalışmaya 152 olgu alındı. Olguların 57’si kazeifiye granülomatöz inflamasyon, 58’i non-kazeifiye granülomatöz inflamasyon, 37’si ise reaktif lenf bezi doku örneklerinden oluşmaktaydı. Dokularda “inductively coupled plasma-optical emission spectroscopy (ICP-OES)” yöntemiyle kalsiyum, magnezyum, demir, bakır, çinko, krom, molibden, nikel ve selenyum elementlerinin analizi yapıldı. Bulgular: Üç grup elde edilen elementlerin miktarları karşılaştırıldığında; kazeifiye granülomatöz inflamasyon ile non-kazeifiye granü- lomatöz inflamasyon karşılaştırıldığında kazeifiye granülomatöz inflamasyonda kalsiyum yüksek (662.6 ± 4.6 ppm, p< 0.001) ve demir miktarı düşük (48.7 ± 83 ppm, p< 0.001) idi. Kazeifiye granülomatöz inflamasyon ile reaktif lenf dokusu karşılaştırıldığında kalsiyum yüksek, demir ve magnezyum düşük idi, non-kazeifiye granülomatöz inflamasyon ile reaktif lenf dokusu karşılaştırıldığında demir miktarı yüksek, magnezyum miktarı düşük idi ancak her iki karşılaştırmada istatistiksel olarak anlamlı fark yoktu. Kazeifiye granülomatöz inflamasyon da kalsiyumun 207 ppm “cutt-of” değeri için özgüllüğü %85, duyarlılığı %63 idi. Yine demir elementinin 51 ppm “cutt-of” değeri için özgüllüğü %74, duyarlılığı %58 idi. Sonuç: Lenf bezi dokusunda kalsiyum yüksekliği ve demir düşüklüğü kazeifiye granülomatöz inflamasyon, tüberküloz, lehine yorumlanabilir. Sarkoidoz ve tüberküloz lenf bezi tutulumunun ayrımında güçlük çekilen durumlarda, doku element analizinin yapılması hastalık ayrımında ek destekleyici bulgu verebilir.

Can tissue elemental analysis be used to differentiate sarcoidosis and tuberculous lymphadenitis?

Introduction: Sarcoidosis and tuberculous lymphadenitis are granulomatousinflammatory diseases. Differentiating lymph node involvement in these twodiseases can be challenging. This study evaluated whether elemental analysisof tissue samples could facilitate the differentiation of these histopathologically and clinically similar diseases.Materials and Methods: A total of 152 tissue samples were included: 57 caseating granulomatous inflammation, 58 non-caseating granulomatous inflammation, and 37 reactive lymph node specimens. The tissue samples wereanalyzed for calcium, magnesium, iron, copper, zinc, chrome, molybdenum,nickel and selenium with inductively coupled plasma-optical emission spectroscopy (ICP-OES).Results: Comparison of element levels in the three groups revealed that caseating granulomatous inflammation had higher calcium content (662.6 ± 4.6ppm, p< 0.001) and lower iron content (48.7 ± 83 ppm, p< 0.001) comparedto non-caseating granulomatous inflammation. Compared to reactive lymph tissue, caseating granulomatous inflammation had higher calcium and lower iron and magnesium content while non-caseating granulomatous inflammation had higher levels of iron and lower magnesium; however, these differences were not statistically significant.In caseating granulomatous inflammation, a calcium cut-off value of 207 ppm yielded 85% specificity and 63% sensitivity. For iron,a cut-off value of 51 ppm had 74% specificity and 58% sensitivity.Conclusion: High calcium and low iron levels in lymph tissue may be suggestive of caseating granulomatous inflammation and tuberculosis. In cases where differentiating between sarcoidosis and tuberculous lymphadenitis is difficult, performing tissue elementalanalysis may provide additional supportive evidence for differential diagnosis.

___

  • 1. World Health Organization. Global Tuberculosis Report 2019. Available online: http://www.who.int/tb/publications/global_report/en/ (accessed on 17 October 2019).
  • 2. Karpathiou G, Batistatou A, Boglou P, Stefanou D, Froudarakis ME. Necrotizing sarcoid granulomatosis: a distinctive form of pulmonary granulomatous disease. Clin Respir J 2018;12(4):1313-9.
  • 3. Chen ES, Moller DR. Etiology of sarcoidosis. Clin Chest Med 2008;29(3):365-77.
  • 4. Burtis CA, Ashwood ER, Bruns DE. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. Elsevier Health Sciences: St Louis, MO, USA, 2012.
  • 5. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012;10:525-37.
  • 6. Lazarus A. Sarcoidosis: epidemiology, etiology, pathogenesis, and genetics. Dis Mon 2009;55:649-60.
  • 7. Carpenter R. The analysis of some evidential materials by inductively coupled plasma-optical emission spectrometry. Forensic Science International 1985;27:157-63.
  • 8. Patriarca M, Menditto A, Di Felice G. Recent developments in trace element analysis in the prevention, diagnosis, and treatment of diseases. Microchemical Journal 1998;59:194-202.
  • 9. Araz O, Araz A, Yılmazel UE, Demirci E, Aydın Y, Akgün M. The effect of surgical specimen-derived phosphorus and lead concentrations in non-small cell lung cancer patients on disease course. Tuberk Toraks 2018;66(4):334-9.
  • 10. Kirenga BJ, Ssengooba W, Muwonge C, et al. Tuberculosis risk factors among tuberculosis patients in Kampala, Uganda: implications for tuberculosis control. BMC Public Health 2015;15:13.
  • 11. Choi R, Kim HT, Lim Y, et al. Serum concentrations of trace elements in patients with tuberculosis and its association with treatment outcome. Nutrients 2015;7(7):5969-81.
  • 12. Sargazi A, Gharebagh RA, Sargazi A, Aali H, Oskoee HO, Sepehri Z. Role of essential trace elements in tuberculosis infection: a review article. Indian J Tuberc 2017;64(4):246- 51.
  • 13. Moller DR, Rybicki BA, Hamzeh NY, et al. Genetic, immunologic, and environmental basis of sarcoidosis. Ann Am Thorac Soc 2017;14(Suppl 6):S429‐S436.
  • 14. Barnard J, et al. ACCESS Research Group 2005 Job and industry classifications associated with sarcoidosis in A Case-Control Etiologic Study of Sarcoidosis (ACCESS) J Occup Environ Med 2005;47(3):226-34.
  • 15. Antanovich DD, Callen JP. Development of sarcoidosis in cosmetic tattoos. Arch Dermatol 2005;141(7):869-72.
  • 16. Corradi M, Acampa O, Goldoni M, et al. Metallic elements in exhaled breath condensate of patients with interstitial lung diseases. J Breath Res 2009;3(4):046003.
  • 17. Noble A, Truman JP, Vyas B, Vukmanovic-Stejic M, Hirst WJ, Kemeny DM. The balance of protein kinase C and calcium signaling directs T cell subset development. J Immunol 2000;164(4):1807-13.
  • 18. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002;38(10):713- 21.
  • 19. Rook GA. The role of vitamin D in tuberculosis. Am Rev Respir Dis 1988;138(4):768-70.
  • 20. Davies P. A possible link between vitamin D deficiency and impaired host defence to Mycobacterium tuberculosis. Tubercle 1985;66(4):301-6.
  • 21. Malik ZA, Thompson CR, Hashimi S, Porter B, Iyer SS, Kusner DJ. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol 2003;170(6):2811-5.
  • 22. Gupta S, Salam N, Srivastava V, et al. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis. PLoS ONE 2009;4(4):e5305.
  • 23. Baughman RP, Teirstein AS, Judson MA, et al. A CaseControl Etiologic Study of Sarcoidosis (ACCESS) research group. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001;164(2):1885-9.
  • 24. Ma Y, Gal A, Koss MN. The pathology of pulmonary sarcoidosis: Update. Semin Diagn Pathol 2007;24(3):150- 61.
  • 25. Weinberg ED. Iron loading and disease surveillance. Emerg Infect Dis 1999;5(3):346.
  • 26. Litwin CM, Calderwood S. Role of iron in regulation of virulence genes. Clin Microbiol Rev 1993;6(2):137-49.
  • 27. Li J, He K, Liu P, Xu LX. Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop. Biochem Biophys Res Commun 2016;475(2):154-60.
  • 28. Gangaidzo IT, Moyo VM, Mvundura E, et al. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis 2001;184(7):936-9.
  • 29. De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 2000;97(3):1252- 7.
  • 30. Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 2000;54:881-941.
  • 31. Yuniastuti A. The role and characteristic of antioxidant for redox homeostasis control system in Mycobacterium tuberculosis. Int Res J Microbiol 2012;3:416-22.
  • 32. Karyadi E, Schultink W, Nelwan RH, et al. Poor micronutrient status of active pulmonary tuberculosis patients in Indonesia. J Nutr 2000;130(12):2953-8.
  • 33. Edem V, Ige O, Arinola O. Plasma vitamins and essential trace elements in newly diagnosed pulmonary tuberculosis patients and at different durations of anti-tuberculosis chemotherapy. Egypt J Chest Dis Tuberc 2015;64(1):675- 9.
  • 34. Gangaidzo IT, Moyo VM, Mvundura E, et al. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis 2001;184(7):936-9.
  • 35. Tomioka H, Kaneda T, Katsuyama E, Kitaichi M, Moriyama H, Suzuki E. Elemental analysis of occupational granulomatous lung disease by electron probe microanalyzer with wavelength dispersive spectrometer: Two case reports. Respir Med Case Rep 2016;18:66-72.
  • 36. Catinon M, Chemarin C, Roux E, Cavalin C, Rosental PA, Thivolet-Bejui F, et al. Polishing surgical metal pieces, granulomatosis and mineralogical analysis. Sarcoidosis Vasc Diffuse Lung Dis 2016;33(2):166-70.
  • 37. Ghio AJ, Roggli VL, Kennedy TP, Piantadosi CA. Calcium oxalate and iron accumulation in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2000;17(2):140-50.