Astım fare modelinde deksametazonun antiinflamatuvar etkisinin araştırılması

Deneysel astım modeli oluşturduğumuz bu çalışmada steroid tedavisinin inflamasyona katılan mediatörler ve hava yolunda oluşan patolojik değişiklikler üzerine etkisini değerlendirmeyi amaçladık. Çalışmaya alınan BALB/c fareler 3 gruba ayrıldı. Grup 1’deki (kontrol grubu) farelere phosphate-buffered saline (PBS) uygulandı. Grup 2 ve 3’teki farelere ovalbumin(OVA) verilerek deneysel astım oluşturuldu. Grup 3’teki farelere deksametazon (DEX) enjekte edildi. Son DEX uygulamasından bir gün sonra tüm fareler servikal dislokasyonla öldürüldü. Bronkoalveoler lavaj (BAL) sıvısı ve akciğer doku örnekleri alındı. Örneklerin IL-4 ve IL-5 seviyeleri ölçüldü ve BAL sıvısında inflamatuvar hücre sayımı yapıldı. Grup 2’deki farelerin BAL sıvısında belirgin eozinofili saptandı. Eozinofil sayısı grup 3’te grup 2’ye nazaran istatistiksel olarak anlamlı derecede düşüktü (p< 0.001). Grup 2’de, bronş ve bronşiyollerin duvarları etrafında yangısal hücre infiltrasyonu, ödem ve hiperemi tespit edildi. Grup 3’teki farelerin akciğerleri normal histolojik görünümde idi. Akciğer dokusunda her iki sitokin düzeyi grup 2’de grup 1’e göre istatistiksel olarak anlamlı derecede yüksek idi (IL-4 için p< 0.003 ve IL-5 için p< 0.002). Grup 3’te her iki sitokin düzeyi grup 2’den anlamlı olarak düşük saptandı (IL-4 için p< 0.001 ve IL-5 için, p< 0.026). BAL sıvısında da her iki sitokin düzeyi grup 2’de grup 1’e göre istatistiksel olarak anlamlı derecede yüksek iken (IL-4 için p 0.05). Sonuç olarak, glukokortikoidlerin antiinflamatuvar etkilerini IL-4, IL-5 ve eozinofil oluşumunu inhibe ederek gösterdikleri düşünülmektedir.

Investigating the antiinflammatuary effect of dexamethasone in an asthma mice model

We performed an asthma mice model in this study and aimed to investigate the levels of mediators in bronchoalveolar lavage fluid (BALF), and lung tissue, and the pathological changes response to the steroid treatment. BALB/c mice divided into three groups. PBS was applied to group 1 (control group). Asthma model was performed by exposing to ovalbuminin group 2 and 3. DEX was injected to group 3. After the last DEX dose all of the mice were killed by cervical dislocation. The samples of BALF and lung tissue were obtained. IL-4 and IL-5 levels of all samples were measured and inflammatory cells were counted in BALF. Evident eosinophilia was determined in BALF of group 2. Eosinophil numbers were lower in group 3 when compared with group 2 and this was statistically significant (p< 0.001). Inflammatory cell infiltration,eodema and hyperemia observed around the walls of bronchus and bronchiols in group 2. The lungs of group 3 had normal histological appearance. Both two cytokin levels of lung tissue were higher in group 2 than group 1, and this was statistically significant (for IL-4 p< 0.003, and for IL-5 p< 0.002). In group 3, both two cytokin levels were statistically lower than group 2 (for IL-4 p< 0.001, and for IL-5 p< 0.026). In BALF samples both two cytokin levels were higher in group 2 than group 1, and this was statistically significant (for IL-4 p< 0.004, and for IL-5 p< 0.001). In group 3, both two cytokin levels were lower than group 2, but it was not statistically significant (p> 0.05). In conclusion, it is thought that anti inflammatory effect of glucocorticoids occur by inhibiting the formation of IL-4, IL-5 and eosinophils.

___

  • 1.WHO/NHLBI Workshop Report. Global strategy for asthma management and prevention. National Institutes of Health, National Health, Lung, and Blood Institute, Bedhesda, MD. 1995: Publication No. 95-3659.
  • 2.Arm JP, Lee TH. The pathobiology of bronchial asthma.Adv Immunol 1992; 51: 323-82.
  • 3.Gleich GJ, Adolphson CR. The eosinophilic leukocyte:structure and function. Adv Immunol 1986; 39:177-253.
  • 4.Robinson DS, Durham SR, Kay AB. Cytokines in asthma. Thorax 1993; 48: 845-53.
  • 5.Hogan SP, Mould A, Kikutani H, et al. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen specific immunoglobulins. J Clin Invest 1997; 99: 1329-39.
  • 6.Punnonen J, Aversa G, Cocks BG, de Vries JE. Role of interleukin-4 and interleukin-13 in synthesis of IgE and expression of CD23 by human B cells.Allergy 1994; 49:576-86.
  • 7.Yamaoka KA, Kolb JP. Involvement of CD23/Fc epsilon RII in the homotypic and heterotypic cytoadhesion of the human eosinophilic cell line Eol-3. Eur Cytokine Netw 1995; 6: 145-55.
  • 8.Van Oosterhout AJM, Ladenius ARC, Savelkoul HFJ, et al. Effect of antl-IL-5 and IL-5 on airway hyperreactivity and eosinophils in guinea pigs. Am Rev Respir Dis 1993;147:548-52.
  • 9.Mauser PJ, Pitman AM, Fernandez X, et al. Effects of an antibody to interleukin-5 in a monkey model of asthma.Am J Respir Crit Care Med 1995; 152: 467-72.
  • 10.Nagai H, Yamaguchi S, Inagaki N, et al. Effect ofanti-IL-5 monoclonal antibody on allergic bronchial eosinophilia and airway hyperresponsiveness in mice. Life Sci 1993; 53:243-7.
  • 11.Herz U, Lumpp Ü, Da Palma JC, et al. The relevance of murine animal models to study the development of allergic bronchial asthma. Immunol Cell Biol 1996; 74:209-17.
  • 12.Ouyang N, Ding J, Chen S. Effects of dexamethasone on apoptosis of airway inflammatory cells in asthmatic guinea-pigs. Zhonghua Jie He He Hu Xi Za Zhi 1998; 21:672-4.
  • 13.Yu B, He Q, Gao Z. The role of glucocorticosteroid and theophylline in asthmatic inflammation of murine model and the inhibition in NO production in lung. Zhonghua Jie He He Hu Xi Za Zhi 1998; 21: 664-7.
  • 14.Henderson WR, Lewis DB, Albert RK, et al. The importance of leukotrienes in airway inflammation in a mouse model of asthma. J Exp Med 1996; 184: 1483-94.
  • 15.Eum SY, Creminon C, Haile S, et al. Inhibition of airways inflammation by dexamethasone is followed by reduced bronchial hyperreactivity in BP2 mice. Clinical and Experimental Allergy 1996; 26: 971-9.
  • 16.Blyth DI, Wharton TF, Pedrick MS, et al. Airway subepithelial ftbrosis in a murine model of atopic asthma supression by dexamethasone or anti-interleukin-5 antibody.Am J Respir Cell Mol Biol 2000; 23:241-6.
  • 17.Peebles RS, Dworski JR, Collins RD, et al. Cyclooxygenase inhibition increases interleukin 5 and interleukin 13 production and airway hyperresponsiveness in allergic mice. Am J Respir Crit Care Med 2000; 162: 676-81.
  • 18.Azzawi M, Bradley B, Jeffrey PK, et al. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis 1990;142: 1407-13.
  • 19.Walker C, Virchow JC, Bruijnzeel PL, Blaser K. T cell subsets and their soluble products regulate eosinophilia in allergic and nonallergic asthma. J Immunol 1991; 146:1829-35.
  • 20.Hogan SP, Koskinen:A, Matthaei Kl, et al. Interleukin-5 producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am J Respir Crit Care Med 1998; 157:210-8.
  • 21.To Y, Dohi M, Tanaka R, et al. Early interleukin 4-dependent response can induce airway hyperreactivity before development of airway inflammation in a mouse model of asthma. Laboratory Investigation 2001; 81: 1385-96.
  • 22.Ohkawara Y, Lei X-F, Stampfli MR, et al. Cytokine and eosinophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation. Am J Respir Cell Mol Biol 1997; 16:510-20.
  • 23.Barnes PJ. Anti-inflammatory therapy for asthma. Annu Rev Med 1993; 44:229-42.
  • 24.Djukanovic R, Wilson JW, Britten KW, et al. Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma. Am Rev Respir Dis 1992; 145: 669-74.
  • 25.Culpepper JA, Lee F. Regulation of IL-3 expression by glucocorticoids in cloned murine T lymphocytes. J Immunol 1985; 135: 3191-7.
  • 26.Cronstein BN, Kimmel SC, Levin Rl, et al. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1992; 89: 9991-5.
  • 27.Kim J, McKinley L, Siddiqui J, et al. Prevention and reversal of pulmonary inflammation and airway hyperresponsiveness by dexamethasone treatment in a murine model of asthma induced by house dust. Am J Physiol Lung Cell Mol Physiol 2004; 287:503-9.
  • 28.Powell WS, Xu LJ, Martin JG. Effect of dexamethasone on leukotriene synthesis and airway responses to antigen and leukotriene D4 in rats. Am J Respir Crit Care Med 1995; 151: 1143-50.
  • 29.Xu L, Olivenstein R, Martin JG, Powell WS. Inhaled budesonide inhibits OVA-induced airway narrowing, inflammation, and cys-LT synthesis in BN rats. J Appl Physiol 2000; 89: 1852-8.
  • 30.Fukuda T, Akutsu I, Amagai M, et al. Antigen-induced biphasic eosinophil infiltration in the airways of actively sensitized guinea pigs and its inhibition by PAF antagonist and cyclosporin. A Arerugi 1990; 39: 548-52.
  • 31.Kung TT, Stelts DM, Zurcher JA, et al. Involvement of lL-5 in a murine model of allergic pulmonary inflammation:prophylactic and therapeutic effect of an anti-IL-5 antibody. Am J Respir Cell Mol Biol 1995; 13: 360-5.
  • 32.Arya SK, Wong-Staal F, Gallo RC. Dexamethasone-mediated inhibition of human T cell growth factor and y-interferon messenger RNA. J Immunol 1984; 133:273-6.
  • 33.Okudaira H, Mori A, Suko M, et al. Enhanced production and gene expression of lL-5 in bronchial asthma-management of atopic diseases with agents that downregulate IL-5gene transcription. ACI News 1994; 6: 19-25.
  • 34.Corrigan CJ, Haczku A, Gemou-Engesaeth V, et al. CD4 T-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5: effect of glucocorticoid therapy. Am Rev Respir Dis 1993; 147: 540-7.
  • 35.Robinson DS, Hamid Q, Sun Y, Bentley AM. A prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage all IL-4, IL-5 and IFN-y cytokines gene expression. Am Rev Respir Dis 1993; 148:401-6.
Tüberküloz ve Toraks-Cover
  • ISSN: 0494-1373
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1951
  • Yayıncı: Tuba Yıldırım
Sayıdaki Diğer Makaleler

Tüberküloz şüphesi olan çocuklarda kesin veya olası tüberküloz ve latent tüberküloz infeksiyonu tanıları

Alper AKIN, Çiğdem ÜNER, Cumhur AYDEMİR, Gönül TANIR, İsmail CEYHAN

Churg-Strauss sendromu (iki olgu nedeniyle)

Güngör ÇAMSARI, Dilek YILMAZBAYHAN, Aygün GÜR, Dilek KANMAZ, Gülcihan ÖZKAN, Nur Dilek BAKAN

Linyit madeni işçilerinde toz maruziyet düzeyleri ve pnömokonyoz sıklığı

Arif H. ÇIMRIN, Nuray KÖMÜS, Ur Şeminur BASARAN, Cemal ÖZBİRSEL, Yücel DEMİRAL, Alp ERGÖR

Soliter pulmoner nodüle tanısal yaklaşım

Ebru DAMADOĞLU, Aysun AYBATLI, Adnan YILMAZ

Astım fare modelinde deksametazonun antiinflamatuvar etkisinin araştırılması

Hakan BULUT, Teyfik TURGUT, Yesari ERÖKSÜZ, Necip İLHAN, Gamze KIRKIL, M. Hamdi MUZ, Figen DEVECİ

Diagnostic yield of closed pleural brushing

Gökay GÜNGÖR, Emine AKSOY, Emin MADEN, Güliz ATAÇ, Tülin SEVİM, Kemal TAHAOĞLU, Tülay TÖRÜN

Fenol amonyum sülfat sedimentasyon yönteminin pulmoner tüberküloz tanısı için değerlendirilmesi

Ahmet Yılmaz ÇOBAN, İbrahim Çağatay ACUNER, Belma DURUPINAR, Taşdelen Nuriye FIŞGIN, Alper AKGÜNEŞ

A case of bronchogenic carcinoma presenting with acute abdomen

Mehmet Ali HABEŞOĞLU, Leyla MEMİŞ, Nalan AKYÜREK, Kıvılcım İ. OĞUZÜLGEN, Can ÖZTÜRK

Poland sendromu (olgu sunumu)

Yavuz YILDIZ, Kudret EKİZ, Seyfettin GÜMÜŞ, Ergun TOZKOPARAN, Ömer DENİZ, Hayati BİLGİÇ, Necmettin DEMİRCİ, Sema SAVCI

Pulmoner emboli kuşkusu olan hastalarda üç farklı klinik olasılık yönteminin karşılaştırılması

Nalan DEMİR, Ulukavak Tansu ÇİFTÇİ, Kıvılcım İ. OĞUZÜLGEN, Numan EKİM, Nurdan KÖKTÜRK