Çocuklarda demir eksikliğinin motor gelişim ve bilişsel fonksiyonlar üzerine etkisi

Demir, insan organizması için esansiyel bir elementtir. Demir eksikliği anemisi (DEA) ülkemizin en önemli sağlık sorunlarından biridir. Demir eksikliğinin (DE), DEA’den daha sık olduğu gözlenmiştir. Gelişmiş ülkelerde demir eksikliğine bağlı anemi insidansı çok azalmış, ancak eksiklik halen sorun olarak devam etmektedir. Demir eksikliği de DEA gibi çocukların gelişiminde geriliğe yol açabileceği için, önemli bir halk sağlığı sorunu olarak görülmektedir. Çocuklarda bilişsel, duygu durum, motor ve davranış testlerini olumsuz etkilemektedir. Bu etkinin geri dönüşümlü olup olmadığı, nedenleri ve mekanizması üzerine birçok çalışma yapılmıştır. Çocuklarda tedavide gecikme olduğunda ya da tedavi edimediğinde zekâ seviyelerinde kalıcı düşmeye neden olmaktadır. Bunun için yaşamın her döneminde demirden zengin besinlerle beslenme, gebelik sırasında annenin demir desteği alması ve yenidoğanın demirden zengin olarak doğmasının sağlanması önemlidir. Demir tedavisi ile gelişme geriliği tam olarak düzelmemektedir. Bununla birlikte demir desteği ya da tedavisi ile demir eksikliği kronik ve ciddi olmadan önce ya da tedavi edilebilirse motor, bilişsel gerilik ve duygulanım bozuklukları önlenebilmektdir. Bu makalede demir eksikliğinin çocuklar üzerinde duygu durum, motor ve bilişsel etkileri ile demirin nöronal fonksiyonlardaki etkisi gözden geçirilmiştir.

Effect of iron deficiency on motor development and cognitive functions in children

Iron is an essential element for the human organism. Iron deficiency anemia (IDA) is one of the most important health problems in Turkey. Iron deficiency (ID) is more frequently seen that IDA. In developed countries, although the incidence of iron deficiency-related anemia has declined significantly, the condition still remains a health issue. Because, as with IDA, iron deficiency can lead to growth retardation in children, this is regarded as a major public health problem. Cognitive, emotional, motor and behavioral test results in children with the condition are adversely affected. Many studies have been carried out to learn the causes and mechanisms of the condition and to ascertain whether the effects are reversible. The condition causes a permanent decline of intelligence In untreated children or whenever treatment is delayed. For this reason, an iron-rich diet is important in all stages of life and it is particularly important for mothers to supplement their iron intake during pregnancy to ensure that the newborn starts off life with a rich store of iron. Developmental retardation is not completely curable with iron therapy. At the same time, if iron deficiency can be treated with iron supplements before it becomes a chronic and serious condition, motor, cognitive and emotional disorders may be prevented. This article reviews the emotional, motor and cognitive effects of iron deficiency in children as well as the impact of iron on neuronal functions.

___

  • 1 Beutler E, Hoffbrand AV, Cook JD. Iron deficiency and overload. Hematology Am Soc Hematol Educ Program. 2003; 40-61.
  • 2 Beutler E. Iron storage disease: facts, fictiob and progress. Blood Cells Mol Dis. 2007; 39: 140-147.
  • 3 Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006; 64: S34-S43.
  • 4 Atamna H, Walter PB, Ames BN. The role of heme and iron-sulfur, clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys. 2002; 397: 345-353.
  • 5 Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996; 17: 83-93.
  • 6 Beard JL, Wiesinger JA, Connor JR. Pre-and postweaning iron deficiency alter myelination in Sprague-Dawley rats. Dev Neurosci. 2003; 25: 308-315.
  • 7 Ortiz E, Pasqini JM, Thompson K, et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res. 2004; 77: 681-689.
  • 8 Markesbery WR, Ehmann WD, Alauddin M, Hossain TI. Brain trace element concentrations in aging. Neurobiol Aging. 1984; 5: 19-28.
  • 9 Gulbis B, Jauniaux E, Decuyper J, Thiry P, Jurkovic D, Campell S. Distribution of iron and iron-binding proteins in first-trimester human pregnancies. Obstet Gynecol. 1994; 84: 289-293.
  • 10 Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child. 1951; 26: 205-214.
  • 11 Ehrenkranz RA. Iron requirements of preterm infants. Nutrition. 1994; 10: 77-78.
  • 12 Hallgren B, Sourander P. The effect of age on the nonhaemin iron in the human brain. J Neurochem. 1958; 3: 41-51.
  • 13 Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related incrase of brain iron in young adult and older normal males. Magn Reson Imaging. 1997; 15: 29-35.
  • 14 Halvorsen S. Iron balance between mother and infant during pregnancy and breastfeeding. Acta Paediatr. 2000; 89: 625-627.
  • 15 Allen LH. Anemia and iron deficiency: effects of pregnancy outcome. Am J Clin Nutr. 2000; 71(suppl): 1280S-1284S.
  • 16 Griffin IJ, Abrams SA. Iron and breastfeeding. Pediatr Clin North Am. 2001; 48: 401-413.
  • 17 Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003; 23: 41-58.
  • 18 Corapci F, Radan AE, Lozoff B. Iron deficiency in infancy and mother-child interaction at 5 years. J Dev Behav Pediatr. 2006; 27: 371-378.
  • 19 Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006; 160: 1108-1113.
  • 20 Konofal E, Lecendreux M, Arnulf I, Mouren MC. Iron deficiency in children with attention-deficit/hyperactivity disorder. Arch Pediatr Adolesc Med. 2004; 158: 1113-1115.
  • 21 Idjradinata P, Pollitt E. Reversal of developmental delays in iron-deficient anaemic infants treated with iron. Lancet. 1993; 341: 1-4.
  • 22 Lozoff B, Brittenham GM, Viteri FE, Wolf AW, Urrutia JJ. The effects of short-term oral iron therapy on developmental deficits in iron-deficent anemic infants. J Pediatr. 1982; 100: 351-357.
  • 23 Kariger PK, Stoltzfus RJ, Olney D, Sazawal S, Black R, Tielsch JM, et al. Iron deficiency and physical growth predict attainment of walking but not crawling in poorly nourished Zanzibari infants. J Nutr. 2002; 135: 814-819.
  • 24 Siegel EH, Stoltzfus RJ, Kariger PK, Katz J, Khatry SK, LeClerq SC, et al. Growth indices, anemia, and diet independently predict motor milestone acquisition of infants in South central Nepal. J Nutr. 2005; 135: 2840-2844.
  • 25 Tamura T, Goldenberg RL, Hou J, Johnston KE, Cliver SP, Ramey SL. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002; 140: 165-170.
  • 26 Gunnarsson BS, Thorsdottir I, Palsson G, Gretasson SJ. Iron status at 1 and 6 years versus developmental scores at 6 years in a well-nourished affluent population. Acta Paediatr. 2007; 96: 391-395.
  • 27 Sheriff A, Emond A, Bell JC. Should infants be screened for anemia? A prospective study investigating the relation between haemoglobin at 8,12, and 18 months and development at 18 months. Arch Dis Child. 2001; 84: 480-485.
  • 28 De Andraca I, Walter T, Castillo M. Iron deficiency anemia and its effects upon psychological development at preschool age: a longitudinal study. Nestle Foundation Nutrition Annual Report (1990) Vevey, Switzerland. Nestle Ltd. 1991: 53-62.
  • 29 Shafir T, Angulo-Barroso R, Calatroni A, Jimenez E, Lozoff B. Effects of iron deficiency in infancy on patterns of motor development over time. Hum Mov Sci. 2006; 25: 821-838.
  • 30 Akman M, Cebeci D, Okur V, Angin H, Abali O, Akman AC. The effects of iron deficiency on infants’ developmental test performance. Acta Paediatr. 2004; 93: 1391-1396.
  • 31 Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics. 2001; 107: 1381-1386.
  • 32 Hubbs-Tait L, Kennedy TS, Droke EA, Belanger DM, Parker Jr. Zinc, iron, and lead: relations to head start children’s cognitive scores and teachers’ ratings of behavior. J Am Diet Assoc. 2007; 107: 128-133.
  • 33 Stoltzfus RJ, Mullany L, Blavk RE. Iron deficiency aneamia. Eds: Ezzatt M, Lopez AD, Rodgers A, et al: Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. Geneva. World Health Organization, 2004, p. 163-209.
  • 34 Dommergues JP, Archambeaud MP, Ducot B, Gerval Y, Hiard C, Rossignol C, et al. Iron deficiency and psychomotor development tests. Longitudinal study between 10 months and 4 years of age. Arch Fr Pediatr. 1989; 46: 487-490.
  • 35 Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron deficiency. N Engl J Med. 1991; 325: 687-694.
  • 36 Walter T, De Andraca I, Chadud P, Perales CG. Iron deficiency anemia: adverse effects on infant psychomotor development. Pediatrics. 1989; 84: 7-17.
  • 37 Thomas DG, Grant SL, Aubuchon-Endsley NL. The role of iron in neurocognitive development. Dev Neuropsychol. 2009; 34: 196-222.
  • 38 Harahap H, Jahari AB, Husaini MA, Saco-Pollitt C, Pollitt E. Effects of an energy and micronutrient supplement on iron deficiency anemia, physical activity and motor and mental development in undernourished children in Indonesia. Eur J Clin Nutr Rev. 2000; 54 Suppl 2: S114-S119.
  • 39 Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, Van Klinken JW. Nutrients for cognitive development in school-aged children. Nutr Rev. 2004; 62: 295-306.
  • 40 Walker SP, Wachs TD, Gardner JM, Lozoff B, Wasserman GA, Pollitt E, et al. International Child Development Steering Group. Child Development risk factors for adverse outcomes in devoloping countries. Lancet. 2007; 369: 145-157.
  • 41 Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006; 13: 158-165.
  • 42 Friel JK, Aziz K, Andrews WL, Harding SV, Courage ML, Adams RJ. A double masked, randomized control trial of iron supplementation in early infancy in healthy fullterm breast-fed infants. J Pediatr. 2003; 143: 582-586.
  • 43 Heywood A, Oppenheimer S, Heywood P, Jolley D, et al. Behavioral effects of iron supplementation in infants in Madang, Papua New Guinea. Am J Clin Nutr. 1989; 50: 630-640.
  • 44 Beard J. Recent evidence from human and animal studies regarding iron status and infant development. J Nutr. 2007; 137: 524S-530S.
  • 45 Youdim MB, Yehuda S. The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamine-opiate system. Cell Mol Biol. 2000; 46: 491-500.
  • 46 Clardy SL, Wang X, Zhao W, Liu W, Chase GA, Beard JL, et al. Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J Neural Transm Suppl. 2006; 71: 173-196.
  • 47 Wiesinger JA, Buwen JP, Cifelli CJ, Unger EL, Jones BC, Beard JL. Down-regulation of dopamine transporter by iron chelation in vitro is mediated by altered trafficking, not synthesis. J Neurochem. 2007; 100: 167-179.
  • 48 Beard Jl, Wiesinger JA, Jones BC. Cellular iron concentrations directly affect the expression levels of norepinephrine transporter in PC12 cells and rat brain tissue. Brain Res. 2006; 1092: 47-