Mısır (Zea mays L.) Fidelerinde Yüksek Sıcaklık Stresi Koşullarında Fotosentetik Pigmentler, Antosiyanin İçeriği ve Antioksidan Enzim Aktivitelerindeki Değişiklikler

Bu çalışmada, C4 tipi fotosentez yapan mısır bitkisinde giderek artan sıcaklığın etkilerinin çalışılması amaçlanmıştır. 20 günlük fideler 5 gün boyunca giderek artan (25/20, 30/25, 35/30, 40/35, 45/40°C 16/8 fotoperiyot) sıcaklık stresine maruz bırakılmıştır. Uygulanan ilk sıcaklık (25/20°C) kontrol grubu olarak kullanılmıştır. Stress hasarı, malondialdehit (MDA), hidrojen peroksit (H2O2), klorofil (a ve b), karotenoid ve antosiyanin içeriği ve fotosistem II’nin maksimum kuantum verimi (Fv/Fm) ile belirlenmiştir. MDA ve H2O2 seviyelerinin yüksek sıcaklıkta (35, 40, 45°C) önemli ölçüde arttığı bulunmuştur. Klorofil içeriğinin 35°C'de en yüksek olduğu gözlenmiştir ancak 35°C sıcaklık ile karşılaştırıldığında 40 ve 45°C uygulanan sıcaklıklarda klorofil içeriğinde azalma belirlenmiştir. Fv/Fm 40 ve 45°C sıcaklık uygulamasında düşüş göstermektedir. Karotenoid ve antosiyanin içeriği yüksek sıcaklık stresi altında önemli ölçüde artmaktadır. Ayrıca, yüksek sıcaklık da (45°C) superoksit dismutaz (SOD), katalaz (CAT), askorbat peroksidaz (APX) ve glutatyon reduktaz (GR) enzim aktiviteleri belirgin bir şekilde artış gösterirken, peroksidaz (POX) ve glutatyon-S-transferaz (GST) enzim aktivitesinde değişiklik gözlenmemiştir. Mısır fidelerinde 35°C’nin üzerinde bir sıcaklık uygulanması yüksek sıcaklık stresine neden olmaktadır. Bu çalışmanın sonucunda, mısır fidelerinde 35°C'nin üzerindeki sıcaklıkların fotosentez üzerinde stress etkisine yol açtığı ve enzimatik ve enzimatik olmayan antioksidan aktiviteyi teşvik ettiği ortaya konmuştur. 

CHANGES IN PHOTOSYNTHETIC PIGMENTS, ANTHOCYANIN CONTENT AND ANTIOXIDANT ENZYME ACTIVITIES OF MAIZE (Zea mays L.) SEEDLINGS UNDER HIGH TEMPERATURE STRESS CONDITIONS

This study was performed in order to determine the effects of gradually increasing temperatures on maize, which belongs to the C4 plant group. 20 day old seedlings were exposed to increasing heat stress (25/20, 30/25, 35/30, 40/35, 45/40°C at 16/8 photoperiods) for 5 days. The first temperature treatment (25/20°C) was used as control. Stress injury was measured in terms of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophyll (a and b), carotenoid and anthocyanin contents and maximum quantum efficiency of photosystem II (Fv/Fm). MDA and H2O2 levels were found to significantly increase at high temperatures (35, 40, 45°C). Chlorophyll content was observed to be highest at 35°C and a decrease was determined at 40 and 45°C. Fv/Fm was found to decrease at 40 and 45°C. Carotenoid and anthocyanin contents dramatically increased under high temperature stress. In addition, significant increases were determined in the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) under high temperature (45°C), while peroxidase (POX) and glutathione S-transferase (GST) activities showed no change. Treatments above 35°C triggered high temperature stress in maize seedlings. The results of this study showed that temperatures above 35°C lead to stress effects on photosynthesis and induced enzymatic and non-enzymatic antioxidant activity in maize seedlings.

___

  • 1. Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R. & Singh T.P. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171: 382–388.
  • 2. Asensi-Fabado, M.A., Oliván, A. & Munné-Bosch, S. 2013. A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany, 94: 57– 65. 3. Asthir, B. 2015. Protective mechanisms of heat tolerance in crop plants. Journal of Plant Interaction, 10(1): 202-210.
  • 4. Bergmeyer, N.1970. Methoden der enzymatischen, Analyse. Akademie Verlag, Berlin, Vol. 1., 636–647.
  • 5. Beuchamp, C. & Fridovich, I 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276–287.
  • 6. Bita, C.E. & Gerats, T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamental sand production of heatstress-tolerant crops. Frontiers Plant Science, 273(4): 1-18.
  • 7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
  • 8. Carmagnol, F., Sinet, P.M., Rapin, J. & Jerome, H. 1981. Glutathione-S-transferase of human RBCs; assay, values in normal subjects and in two pathological circumstance. Hyperbilirubinaemia and impaired renal function. International Journal of Clinical Chemistry, 117: 209–217.
  • 9. Chen, J., Xu, W., Velten, J., Xin, Z. & Stout, J. 2012. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67(5): 354-364.
  • 10. Chen, W., Cen, W., Chen, L., Di, L., Li, Y. & Guo, W. 2012. Differential Sensitivity of Four Highbush Blueberry (Vaccinium Corymbosum L.) Cultivars to Heat Stress. Pakistan Journal of Botany, 44(3): 853-860.
  • 11. Choudhury, S., Panda, P., Sahoo, L. & Panda, S.K. 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signalling & Behavior, 8(4): e23681 DOI: 10.4161/psb.23681.
  • 12. Crafts-Brandner, S.J. & Salvucci, M.E. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 129: 1773–1780.
  • 13. Cui, L., Li, J., Fan, Y., Xu, S. & Zhang, Z. 2006. High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Botanical Studies, 47: 61–69.
  • 14. Coşkun, Y., Coşkun, A., Demirel, U. & Özden, M. 2011. Physiological response of maize (Zea mays L.) to high temperature stress. Australian Journal of Crop Science, 5(8): 966–972.
  • 15. Dalton, D.A., Boniface, C., Turner, Z., Lindahl, A., Kim, H.J., Jelinek, L., Govindarajulu, M., Finger, R.E. & Taylor, C.G. 2009. Physiological roles of glutathioneS-transferases in soybean root nodules. Plant Physiology, 150: 521–530.
  • 16. Efeoglu, B. & Terzioglu, S. 2009. Photosynthetic responses of two wheat varieties to high temperature. EurAsian Journal of BioSciences, 3: 97-106.
  • 17. Ergin, S., Gülen, H, Kesici, M., Turhan, E., İpek, A. & Köksal, N. 2016. Effects of high temperature stress on enzymatic and nonenzymatic antioxidants and proteins in strawberry plants. Turkish Journal of Agriculture and Forestry, 40: 908-917.
  • 18. Foyer, C.H. & Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta, 133: 21–25.
  • 19. Gill, S.S. & Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930.
  • 20. Gould, K.S., Mckelvie, J. & Markham, K.R. 2002. Do anthocyanins function as antioxdants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant, Cell & Environment, 25: 1261–1269.
  • 21. Gür, A., Demirel, U., Özden, M., Kahraman, A. & Çopur, O. 2010. Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). African Journal of Biotechnology, 9: 1008–1015.
  • 22. Hatfield, J.L. & Prueger, J.H. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10: 4–10.
  • 23. He, Y. & Huang, B. 2012. Differential responses to heat stress in activities and isozymes of four antioxidant enzymes for two cultivars of Kentucky bluegrass contrasting in heat tolerance. Journal of American Society for Horticultural Science, 135: 116–124.
  • 24. Herzog, V. & Fahimi, H. 1973. Determination of the activity of peroxidase. Analytical Biochemistry, 55: 554–562.
  • 25. Hoagland, D.R. & Arnon, D.I. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station, 347: 32.
  • 26. IPCC 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  • 27. Jiang, M. & Zhang, J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42: 1265–1273.
  • 28. Kumar, S. Gupta, D. & Nayyar, H. 2012. Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiologia Plantarum, 34: 75–86.
  • 29. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes, in: L. Packer, R. Douce (Eds.), Methods in Enzymology. Plant Cell Membranes, Academic Press, New York, pp. 350–382.
  • 30. Lichtenthaler, H.K., Buschmann, C., Döll, M., Fietz, H.J., Bach, T., Kozel, U., Meier, D. & Rahmsdorf, U. 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 2: 115-141.
  • 31. Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H. & Liang, D. 2008. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Science, 175: 761–766.
  • 32. Mancinelli, A.L. 1990. Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiology, 92: 1191–1195.
  • 33. Mori, K., Goto-Yamamoto, N., Kitayama, M. & Hashizume, K. 2007. Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58 (8):1935–1945.
  • 34. Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867–880.
  • 35. Perdomo, J.A., Conesa, M.À., Medrano, H., Ribas-Carbó, M. & Galmés, J. 2015. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation. Physiologia Plantarum, 155: 149–165.
  • 36. Savicka, M. & Škute, N. 2010. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija, 56:26–33.
  • 37. Shao, L., Shu, Z., Sun, S-L., Peng, C-L., Wang, X-J. & Lin, Z-F. 2007. Antioxidation of anthocyanins in photosynthesis under high temperature stress. Journal of Integrative Plant Biology, 49 (9): 1341–1351.
  • 38. Shigeoka, S, Ishikawa, T, Tamoi, M., Miyagawa, Y, Takeda, T, Yabuta, Y, Yoshimura, K. 2002. Regulation and function of ascorbate peroxidase İsoenzymes. Journal of Experimental Botany, 53 (372): 1305–1319.
  • 39. Sinsawat, V., Leipner, J., Stamp, P. & Frachebound, Y. 2004. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Enviromental and Experimental Botany, 52: 123–129.
  • 40. Suwa, R., Hakata, H., Hara, H., El-Shemy, H.A., Adu-Gyamfi, J.J., Nguyen, N.T., Kanai, S., Lightfoot, D.A., Mohapatra, P.K. & Fujita, K. 2010. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 48: 124–130.
  • 41. Velikova, V., I. Yordanov A. & Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Science, 151: 59-66.
  • 42. Wahid, A. 2007. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of Plant Research, 120: 219–228.
  • 43. Wahid A, Gelani S., Ashraf M. & Foolad MR. 2007. Heat tolerance in plants: an overview. Enviromental and Experimental Botany, 61: 199–223.
  • 44. Wang, C., Wen, D., Sun, A., Han, X., Zhang, J., Wang, Z. & Yin, Y. 2014. Differential activity and expression of antioxidant enzymes and alteration in osmolyte accumulation under high temperature stress in wheat seedlings. Journal of Cereal Science, 60: 653-659.
Trakya University Journal of Natural Sciences-Cover
  • ISSN: 2147-0294
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2000
  • Yayıncı: Trakya Üniversitesi
Sayıdaki Diğer Makaleler

ÇEŞİTLİ BİTKİ ÇAYLARININ MONOAMİN OKSİDAZ İNHİBİSYONLARININ VE ANTİOKSİDAN ETKİLERİNİN BELİRLENMESİ

Başak Yüce Dursun

Bir Aromatik Bitki Origanum onites L.’de Terpen Sentaz-6 (TPS-6) Geninin Kısmi Klonlanması ve Tanımlanması

İsmail Poyraz, Merve Sağlam

Mısır (Zea mays L.) Fidelerinde Yüksek Sıcaklık Stresi Koşullarında Fotosentetik Pigmentler, Antosiyanin İçeriği ve Antioksidan Enzim Aktivitelerindeki Değişiklikler

Elif Yüzbaşıoğlu, Eda Dalyan, Ilgın Akpınar

KONTAKT LENS SOLÜSYONLARININ KLİNİK ÖRNEKLERDEN İZOLE EDİLEN BAKTERİLERE KARŞI ETKİSİ

Miray Üstüntürk-Onan

Türkiye’nin Batısında, Kütahya İlinde Sphaeridium Fabricius, 1775 (Coleoptera: Hydrophilidae) Cinsi Üzerine Bir Çalışma

Yakup ŞENYÜZ, Mustafa Cemal Darılmaz, Kemal Dindar

Edirne Civarinda (Trakya Üniversitesi Arboretumu) Bazı Rosaceae Bitkileri ile Birlikteliğe Sahip Predatör Böcek Türleri

Seda Emel Tek, Zuhal Okyar

ERİTROSİTLERDE in vitro OKSİDATİF STRESE KARŞI ANTİOKSİDAN OLARAK DEĞERLENDİRİLEN ÇEŞİTLİ BİTKİ EKSTRAKTLARI

Seda BALKAN

ÇİNKO OKSİT NANOPARTİKÜLÜ İLE ÇİNKO KLORÜR'ÜN Daphnia magna (Straus) ÜZERİNE AKUT TOKSİK ETKİLERİ

Şeyda FİKİRDEŞİCİ ERGEN

CONTRIBUTIONS TO APHIDIINAE (HYMENOPTERA: BRACONIDAE) FAUNA OF TURKEY WITH NEW RECORDS

Serdar AKAR, Özlem ÇETİN ERDOĞAN

Arabidopsis thaliana (L.) Heynh. YAPRAKLARINDA GUS VE GFP RAPORTÖR GENLERİ KULLANILARAK SENESENS İLE İLİŞKİLİ GENLERİN ANALİZİ

Nihal GÖREN SAĞLAM