ÇİNKO OKSİT NANOPARTİKÜLÜ İLE ÇİNKO KLORÜR'ÜN Daphnia magna (Straus) ÜZERİNE AKUT TOKSİK ETKİLERİ

Bu çalışmada çinko oksit nanopartikülünün (ZnO NP), çinko klorürün (ZnCl2) ve karışımlarının, farklı konsantrasyonlarda (0,75, 1,5, 3, 6 ve 12ppm) Daphnia magna (Straus, 1820) üzerine akut toksik etkileri 24., 48. ve 72. saatlerde statik akut toksisite testi kullanılarak araştırılmıştır. Veriler probit analiz metodu kullanılarak istatistiksel olarak değerlendirilmiştir (SPSS 21.0v). En yüksek toksisite karışımın (ZnO NP+ZnCl2) 72. saatinde, en düşük toksisitenin ise ZnCl2'nin 24. saatinde olduğu tespit edilmiştir. Akut toksisite sonuçları göz önüne alındığında, D. magna üzerine ZnO NP'nin ZnCl2'ye göre, karışımlarının ise bu iki kirleticiye göre daha toksik olduğu tespit edilmiştir. Zamana bağlı akut toksisite sonucu değerlendirildiğinde her üç deney grubu (ZnO NP, ZnCl2 ve ZnO NP+ ZnCl2) için zaman arttıkça toksisitenin de arttığı belirlenmiştir.

Acute Toxic Effects of Zinc Oxide Nanoparticle and Zinc Chloride on Daphnia magna (Straus)

The acute toxicities of zinc oxide nanoparticle (ZnO NP), zinc chloride (ZnCl2) and their mixtures of different concentrations (0.75, 1.5, 3, 6 and 12ppm) on Daphnia magna (Straus, 1820) were investigated at 24, 48 and 72 hours by employing the static acute toxicity test. The data obtained were statistically evaluated by probit analysis method (SPSS 21.0v). The highest toxicity was found at 72 hours of the mixture (ZnO NP+ZnCl2) and the lowest toxicity was found at 24 hours of ZnCl2. When the overall acute toxicity results were considered, ZnO NP was determined to be more toxic than ZnCl2 and mixtures were determined to be more toxic than these two pollutants alone. When the results of time-dependent acute toxicity were evaluated, toxicity was found to increase with increasing time for all three experimental groups (ZnO NP, ZnCl2 and ZnO NP+ZnCl2).

___

  • 1. Adam, N., Schmitt, C., De Bruyn, L., Knapen, D. & Blust, R. 2015. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Science of the Total Environment, 526: 233-242.
  • 2. Anonim, Water quality ISO–6341, 1999. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea): Acute toxicity test.
  • 3. Anton, A., Serrano, T., Angulo, E., Ferrero, G. & Rallo, A. 2000. The use of two species of crayfish as environmental quality sentinels: the relationship between heavy metal content, cell and tissue biomarkers and physico-chemical characteristics of the environment. Science of the Total Environment, 247(2-3): 239-251.
  • 4. Azevedo, S.L., Ribeiro, F., Jurkschat, K., Soares, A.M.V.M. & Loureiro, S. 2016. Co-exposure of ZnO nanoparticles and UV radiation to Daphnia magna and Danio rerio: Combined effects rather than protection. Environmental Toxicology and Chemistry, 35(2): 458-467.
  • 5. Bacchetta, R., Maran, B., Marelli. M., Santo, N. & Tremolada, P. 2016. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. Environmental Research, 148: 376-385.
  • 6. Baker, T.J., Tyler, C.R. & Galloway, T.S. 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186: 257-271.
  • 7. Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M. & Kahru, A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 158(1): 41-47.
  • 8. Dener, J.W. & Sinnige, T.L. 1988. The joint acute toxicity to Daphnia magna of industrial organic chemicals at low concentrations. Aquatic Toxicology, 12: 33-38.
  • 9. Fikirdeşici, S., Altindaǧ, A. & Özdemir, E. 2012. Investigation of acute toxicity of cadmium-arsenic mixtures to Daphnia magna with toxic units approach. Turkish Journal of Zoology, 36(4): 543-550.
  • 10. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C. & Kahru, A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71 (7): 1308-1316.
  • 11. Hai-zhou, Z., Guang-hua, L., Jun, X. & Shao-ge, J. 2012. Toxicity of Nanoscale CuO and ZnO to Daphnia magna. Chemical Research in Chinese Universities, 28(2): 209-213.
  • 12. Haulik, B., Balla, S., Pálfi, O., Szekeres, L., Juríková, T., Sály, P. & Bakonyi, G. 2015. Comparative ecotoxicity of the nano Ag, TiO2 and ZnO to aquatic species assemblages. Applied Ecology and Environmental Research, 13(2): 325-338.
  • 13. Kuang, H., Yang, P., Yang, L., Aguilar, Z.P. & Xu, H. 2016. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. Journal of Hazardous Materials, 317: 119-126.
  • 14. Loureiro, C., Castro, B.B., Pereira, J.L. & Gonçalves, F. 2011. Performance of standard media in toxicological assessments with Daphnia magna: Chelators and ionic composition versus metal toxicity. Ecotoxicology, 20(1): 139-148.
  • 15. Ma, X. & Wang, C. 2010. Fullerene Nanoparticles Affect the Fate and Uptake of Trichloroethylene in Phytoremediation Systems. Environmental Engineering Science, 27(11): p. 989-992.
  • 16. Marking, L.L. 1977. Method for assessing additive toxicity of chemical mixtures. Pp. 99-108. In: Mayer, F.L. & Hamelink, J.L. (eds.) Aquatic Toxicology and Hazard Evaluation ASTM STP 634, American Society for Testing and Materials.
  • 17. Mwaanga, P., Carraway, E.R., & van den Hurk, P. 2014. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquatic Toxicology, 150: 201-209.
  • 18. Palmgren, M.G., Clemens, S., Williams, L.E., Krämer, U., Borg, S., Schjørring, J.K. & Sanders, D. 2008. Zinc biofortification of cereals: problems and solutions. Trends in Plant Science, 13(9): 464-473.
  • 19. Que, R.J., Wang, X.H., Feng, M.B., Li, Y., Liu, H.X., Wang, L.S. & Wang, Z.Y. 2013. The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels. Ecotoxicology and Environmental Safety, 95: 83-90.
  • 20. Rahman, Q.I., Ahmad, M., Misra, S.K. & Lohani, M. 2013. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters, 91: 170-174.
  • 21. Shashkova, T.L. & Grigor'ev, Y.S. 2013. Impact of heavy metals on the trophic activity of daphnia depending on feeding conditions and age of crustaceans. Contemporary Problems of Ecology, 6(6): 662-666.
  • 22. Shetty, P.K., Venuvanka, V., Jagani, H.V., Chethan, G.H., Ligade, V.S., Musmade, P.B., Nayak, U.Y., Reddy, M.S., Kalthur, G., Udupa, N., Rao, C.M. & Mutalik, S. 2015. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International Journal of Nanomedicine, 10: 6477-6491.
  • 23. Spehar, R.L. & Fiandt, J.T. 1986. Acute and chronic eff ects of water quality criteria- based metal mixtures on three aquatic species. Environmental Toxicology and Chemistry, 5: 917-931.
  • 24. Sprague, J.B. & Ramsay, B.A. 1965. Lethal levels of mixed copperzinc solution for juvenile salmon. Journal of the Fisheries Research Board of Canada, 22: 425-432.
  • 25. Tan, Q.G. & Wang, W.X. 2011. Acute toxicity of cadmium in Daphnia magna under different calcium and pH conditions: Importance of influx rate. Environmental Science and Technology, 45(5): 1970-1976.
  • 26. Wang, D., Hu, J., Irons, D.R. & Wang, J. 2011. Synergistic toxic effect of nano-TiO2 and As(V) on Ceriodaphnia dubia. Science of the Total Environment, 409: 1351-1356.
  • 27. Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R.M., Liu, Y., Stuckey, D., Ng, W.J. & Tan, S.K. 2015. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere, 120: 211-219.
Trakya University Journal of Natural Sciences-Cover
  • ISSN: 2147-0294
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2000
  • Yayıncı: Trakya Üniversitesi
Sayıdaki Diğer Makaleler

Mısır (Zea mays L.) Fidelerinde Yüksek Sıcaklık Stresi Koşullarında Fotosentetik Pigmentler, Antosiyanin İçeriği ve Antioksidan Enzim Aktivitelerindeki Değişiklikler

Elif Yüzbaşıoğlu, Eda Dalyan, Ilgın Akpınar

PREDATORY INSECT SPECIES ASSOCIATED WITH SOME ROSACEOUS PLANTS IN EDİRNE (TRAKYA UNIVERSITY ARBORETUM), TURKEY

Zuhal OKYAR, Seda Emel TEK

A STUDY ON THE GENUS Sphaeridium FABRICUS, 1775 (COLEOPTERA: HYDROPHILIDAE) IN KÜTAHYA PROVINCE, WESTERN TURKEY

Mustafa Cemal DARILMAZ, Yakup ŞENYÜZ, Kemal DİNDAR

Edirne Civarinda (Trakya Üniversitesi Arboretumu) Bazı Rosaceae Bitkileri ile Birlikteliğe Sahip Predatör Böcek Türleri

Seda Emel Tek, Zuhal Okyar

SU ARACILIĞIYLA SODYUM FLORÜR KONSANTRASYONLARINA MARUZ KALMA LEYDİG HÜCRELERİNDE SİTOTOKSİSİTE VE OKSİDATİF HASARA NEDEN OLABİLİR

Yasemin AYDİN

Türkiye’nin Batısında, Kütahya İlinde Sphaeridium Fabricius, 1775 (Coleoptera: Hydrophilidae) Cinsi Üzerine Bir Çalışma

Yakup ŞENYÜZ, Mustafa Cemal Darılmaz, Kemal Dindar

ÇEŞİTLİ BİTKİ ÇAYLARININ MONOAMİN OKSİDAZ İNHİBİSYONLARININ VE ANTİOKSİDAN ETKİLERİNİN BELİRLENMESİ

Başak Yüce Dursun

METİLEN MAVİSİNİN MODİFİYE EDİLMİŞ Cystoseira barbata (STACKHOUSE) C. AGARDH KULLANILARAK BİYOSORPSİYONU

Yeliz Özüdoğru, Melek MERDİVAN

KONTAKT LENS SOLÜSYONLARININ KLİNİK ÖRNEKLERDEN İZOLE EDİLEN BAKTERİLERE KARŞI ETKİSİ

Miray Üstüntürk-Onan

ERİTROSİTLERDE in vitro OKSİDATİF STRESE KARŞI ANTİOKSİDAN OLARAK DEĞERLENDİRİLEN ÇEŞİTLİ BİTKİ EKSTRAKTLARI

Seda BALKAN