İstanbul’daki otoyol kenarı toprak örneklerinin ağır metal konsantrasyonlarının ve jeo-birikim indeksinin değerlendirmesi

Bu çalışmada, İstanbul ilinin yapım yılları farklı iki otoyolu olan, E80 Tem Otoyolu ve Kuzey Marmara Otoyolu’nun farklı bölgelerinden alınan 36 adet toprak numunesinin inorganik element konsantrasyonlarının belirlenmesi, ayrıca kirlilik faktörü (CF) ve jeo-birikim (Igeo) indeksi hesaplamaları yapılarak, çevre toksikolojisi ve halk sağlığı çerçevesinde değerlendirilmesi amaçlanmıştır. Indüktif Eşleşmiş Plazma-Kütle Spektrometresi sistemi kullanılarak 24 inorganik element aranmış ve iki otoyol arasında Li, Mg, K, Ca, Cr, Ni, As, Sr ve Ba elementleri için anlamlı fark bulunmuştur (p<0.05). E80 otoyolunda Zn, Cd ve Pb konsantrasyonlarının kabul edilebilir sınırın üzerinde bulunduğu, CF değerinin otoyola en yakın mesafelerde Zn elementi için orta ve çok yüksek düzeyde olduğu, Igeo indeksine göre ise numunelerin Mn ve Zn için Sınıf II (Kirlenmemiş-orta derecede kirlenmiş) kategorisinde olduğu belirlenmiştir. Böylelikle trafik yükünün ve kent hayatının yoğun olduğu İstanbul’da kaçınılmaz olan çevre kirliliğinin etkin bir belirteci olan yol kenarı toprak kirliliği, ekosistemin uğrayacağı zarar hakkında önemli veri sağlamıştır. Yirmi dört elementin eş zamanlı analizinin yapıldığı ilk araştırma niteliği taşıyan bu çalışma, otoyolun trafik yüküne ve kullanım yılına göre ağır metal yükünün de arttığını ve bu yükün otoyola 10 metre mesafeye kadar yüksek bulunduğunu göstermiştir. Trafik yoğunluğunun yüksek olduğu kentlerde ayrıca halk sağlığı ve çevre toksikolojisi yönünden toprak numunelerinin incelenmesinin önemini ortaya koymuştur.

Evaluation of heavy metal concentrations and geo-accumulation index of roadside soil of highways in Istanbul

In this study, it was aimed to determine the inorganic element concentrations of 36 soil samples collected from different regions of E80 Tem Highway and Northern Marmara Highway, which are two highways of Istanbul province with different construction years, and to evaluate them within the framework of environmental toxicology and public health by calculating contamination factor (CF) and geo-accumulation (Igeo) indices. Twenty-four inorganic elements were analyzed by using Inductively Coupled Plasma-Mass Spectrometry system and significant differences were found between the two highways for Li, Mg, K, Ca, Cr, Ni, As, Sr and Ba (p<0.05). On the E80 highway, Zn, Cd and Pb values were found to be above the acceptable limit, the CF value was found to be at moderate and very high levels for Zn element in samples closest to the highway, and according to the Igeo index, the samples were in Class II (Unpolluted-moderately polluted) category for Mn and Zn. Thus, roadside soil pollution, which is an effective indicator of environmental pollution, inevitable in Istanbul, where traffic load and urban life is intense, has provided important data on the damage to the ecosystem. As the first research in which twenty-four elements were analyzed simultaneously, this study showed that the heavy metal load increases according to the traffic load and the year of use of the highway and that this load is high up to 10 meters from the highway. It also revealed the importance of examining soil samples in terms of public health and environmental toxicology in cities with high traffic density.

___

  • Abrahams PW, 2002. Soils: their implications to human health. Science of the Total Environment. 291(1-3): 1-32.
  • Adimalla N, 2020. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health. 42(1): 59-75.
  • Al-Khashman OA, 2004. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmospheric environment. 38(39): 6803-6812.
  • Baltas H, Sirin M, Gökbayrak E, Ozcelik AE, 2020. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere. 241: 125015.
  • Barbieri MJJGG, 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys. 5(1): 1-4.
  • Chabukdhara M, Nema AK, 2012. Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere, 87(8), 945-953.
  • Coşkun M, Steinnes E, Frontasyeva MV, Sjobakk T E, Demkina S, 2006. Heavy metal pollution of surface soil in the Thrace region, Turkey. Environmental monitoring and assessment. 119: 545-556.
  • Çağlarırmak N, Hepçimen AZ, 2010. Ağır Metal Toprak Kirliliğinin Gıda Zinciri ve İnsan Sağlığına Etkisi. Akademik Gıda. 8(2): 31-35.
  • El-Zeiny AM, Abd El-Hamid HT, 2022. Environmental and human risk assessment of heavy metals at northern Nile Delta region using geostatistical analyses. The Egyptian Journal of Remote Sensing and Space Science. 25(1): 21-35.
  • European Commission, 2007, Joint Research Centre, Certified reference materials catalogue: BCR-700 Organic-Rich Soil (extractable elements). Available from URL: https://crm.jrc.ec.europa.eu/p/40455/40459/By-kind-of-material/Soils-sludges-sediment-dust/BCR-700-ORGANIC-RICH-SOIL-extractable-elements/BCR-700)
  • Faisal M, Wu Z, Wang H, Hussain Z, Azam MI, 2021. Human health risk assessment of heavy metals in the urban road dust of Zhengzhou metropolis, China. Atmosphere, 12(9), 1213.
  • Faiz Y, Tufail M, Javed MT, Chaudhry MM, 2009. Road dust pollution of Cd, Cu, Ni, Pb and Zn along islamabad expressway, Pakistan. Microchemical Journal. 92(2): 186-192.
  • Gope M, Masto RE, George J, Hoque RR, Balachandran S, 2017. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety. 138: 231-241.
  • Guney M, Onay TT, Copty NK, 2010. Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey. Environmental monitoring and assessment. 164: 101-110.
  • Hakanson L, 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Resources. 14: 975-1001.
  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H, 2017. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658-1668.
  • Jung CC, Wang JH, Chang WH, Chen CY, 2021. Metal concentration, source, and health risk assessment of PM2. 5 in children's bedrooms: Rural versus urban areas. Atmospheric Environment, 264, 118701.
  • Kamani H, Ashrafi SD, Isazadeh S, Jaafari J, Hoseini M, Mostafapour FK, Mahvi AH, 2015. Heavy metal contamination in street dusts with various land uses in Zahedan, Iran. Bulletin of environmental contamination and toxicology. 94: 382-386.
  • Kara EE, Kara E, 2018. Toprakta Ağır Metal Kirliliğinin İnsan Sağlığına Etkileri ve Çözüm Önerileri. Türk Bilimsel Derlemeler Dergisi. 11(1): 56-62.
  • Karaca A, Mert M, 2012. Adli toprak bilimi. Toprak Bilimi ve Bitki Besleme Dergisi. 1 (1): 40-46.
  • Li X, Poon CS, Liu PS, 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied geochemistry. 16(11-12): 1361-1368.
  • Liang SY, Cui JL, Bi XY, Luo XS, Li XD, 2019. Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Science of The Total Environment. 695: 133596.
  • Lima, L. H. V., do Nascimento, C. W. A., da Silva, F. B. V., & Araújo, P. R. M. (2023). Baseline concentrations, source apportionment, and probabilistic risk assessment of heavy metals in urban street dust in Northeast Brazil. Science of The Total Environment, 858, 159750.
  • Masoudi SN, Sepanlou MG, Bahmanyar MA, 2012. Distribution of lead, cadmium, copper and zinc in roadside soil of Sari-Ghaemshahr road, Iran. Afr J Agric Res. 7(2): 198-204.
  • Mercan S, Ellez SZ, Türkmen Z, Yayla M, Cengiz S, 2015. Quantitative lead determination in coating paint on children's outwear by LA-ICP-MS: A practical calibration strategy for solid samples. Talanta. 132: 222–227.
  • Muller, 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118.
  • Negahban S, Mokarram M, 2021. Potential ecological risk assessment of Ni, Cu, Zn, Cd, and Pb in roadside soils. Earth and space science. 8(4): e2020EA001120.
  • Ogundele DT, Adio AA, Oludele OE, 2015. Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. Journal of Environmental & Analytical Toxicology: 5(6): 334.
  • Rasmussen PE, Subramanian KS, Jessiman BJ, 2001. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of The Total Environment. 267(1-3): 125-140.
  • Saito, H., Sutton, M., Zhao, P., Lee, S. D., & Magnuson, M. (2020). Review of technologies for preventing secondary transport of soluble and particulate radiological contamination from roadways, roadside vegetation, and adjacent soils. Environmental Advances, 1, 100003.
  • Sezgin N, Ozcan HK, Demir G, Nemlioglu S, Bayat C, 2004. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International. 29(7): 979-985.
  • Shahid M, Nadeem M, Bakhat HF, 2020. Environmental toxicology and associated human health risks. Environmental Science and Pollution Research. 27: 39671-39675.
  • Shi J, Wang H, Xu J, Wu J, Liu X, Zhu H, Yu C, 2007. Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology. 52: 1-10.
  • Stefanidou M, Maravelias C, Dona A, Spiliopoulou C, 2006. Zinc: a multipurpose trace element. Archives of toxicology. 80: 1-9.
  • Şen G, Yakupoğlu T, 2022. Moralli Deresi Sisteminin Akarsu-Göl Çökellerindeki Ağır Metallerin Ekolojik ve Çevresel Risk Değerlendirmesi, Tuşba, Van, Türkiye. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 27(1): 14-29.
  • Toprak Kirliliğinin Kontrolü ve Noktasal Kaynaklı Kirlenmiş Sahalara Dair Yönetmelik, 08.06.2010. Resmi Gazete. URL: https://www.resmigazete.gov.tr/eskiler/2010/06/20100608-3.htm
  • Wu J, Lu J, Li L, Min X, Luo Y, 2018. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere. 201: 234-242.
  • Yan X, Zhang F, Gao D, Zeng C, Xiang W, Zhang M, 2013. Accumulations of heavy metals in roadside soils close to Zhaling, Eling and Nam Co Lakes in the Tibetan Plateau. International journal of environmental research and public health. 10(6): 2384-2400.
  • Yaylalı-Abanuz G, 2019. Application of multivariate statistics in the source identification of heavy-metal pollution in roadside soils of Bursa, Turkey. Arabian Journal of Geosciences. 12: 1-14.
  • Yesilkanat CM, Kobya Y, 2021. Spatial characteristics of ecological and health risks of toxic heavy metal pollution from road dust in the Black Sea coast of Turkey. Geoderma Regional. 25: e00388.
  • Yetimoğlu EK, Ercan Ö, Tosyali K, 2007. Heavy Metal Contamination in Street Dusts of Istanbul (Pendik to Levent) E-5 Highway. Annali di Chimica: Journal of Analytical, Environmental and Cultural Heritage Chemistry. 97(3-4): 227-235.
  • Zhang F, Yan X, Zeng C, Zhang M, Shrestha S, Devkota LP, Yao T, 2012. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. International Journal of Environmental Research and Public Health. 9(5): 1715-1731.