Arazi koşullarında çinko ile kirletilmiş toprağın biyolojik özelliklerindeki değişim

Toprak mikroorganizmaları ve bunların aktiviteleri toprak kirliliğinin izlenmesi ve değerlendirilmesinde önemli ayraçlar olarak değerlendirilmektedir. Bu çalışmada, tın bünyeli bir toprağa artan dozlarda uygulanan çinko (Zn)’nun toprağın mikrobiyal biyomas karbon (Cmic), toprak solunumu (TS), üreaz (UA) ve β-glikosidaz (β-GA) aktiviteleri gibi mikrobiyal özelliklerindeki değişimler değerlendirilmiştir. Deneme tesadüf blokları deneme desenine göre üç tekerrürlü ve 0, 75, 150, 300, 600 ve 1200 mg kg-1 Zn dozları olarak kurulmuştur. Toprak mikrobiyolojik özelliklerindeki değişiklikleri belirlemek için her parselden yıl boyunca her ay toprak örneklemesi yapılmıştır. Çalışmanın sonuçlarına göre; toprağın Cmic’i kontrol uygulamasına kıyasla yüksek Zn dozlarında düşmüştür. Buna karşın, TS kontrole göre düşük Zn dozlarında düşerken yüksek dozlarda artış göstermiştir. Toprağa uygulanan tüm çinko dozlarının β-GA üzerinde olumsuz etkilere sahip olduğu görülmektedir. Üreaz aktivitesi ise orta ve yüksek dozlardaki Zn’den olumsuz etkilenmiştir.

Change in the biological properties of soil contaminated with zinc in field conditions

Soil microorganisms and their activities are considered as important factors in the monitoring and evaluation of soil pollution. In this study, the changes in the microbial properties of the soil such as microbial biomass carbon (Cmic), soil respiration (TS), urease (UA) and β-glycosidase (β-GA) activities of Zn applied at increasing doses to a loam textured soil were evaluated. The experiment was established according to the randomized blocks experimental design with three replications and doses of 0, 75, 150, 300, 600 and 1200 mg kg-1 Zn. To determine the changes in soil microbiological properties, soil samples were taken from each plot every month throughout the year. According to the results of the study; Cmic of soil decreased at higher Zn doses compared to control treatment. On the other hand, TS decreased at low Zn doses and increased at higher doses compared to control. All doses of zinc applied to the soil appear to have negative effects on β-GA. Urease activity was negatively affected by medium and high doses of Zn.

___

  • Anderson JPE. 1982. Soil respiration. In: Methods of soil analysis, Part 2, Chemical and microbiological properties. Page, A. L. (Ed.) ASA - SSSA, Madison, Wisconsin, USA. pp. 831-871.
  • Anderson JPE, Domsch KH. 1978. A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215- 221.
  • Aşkın T, Kızılkaya R, Gülser C. 2006. Cooper Lead, Cadmium and Nickel Fractions in Agricultural Soils: A Study on Bafra Plain. Anadolu University Journal of Science and Technology, 7(1):167-177.
  • Ataman Ş, Arcak S. 2000. Effects of the sewage sludge of Ankara waste water treatment plant on some soil biological properties. Proceedings of International Symposium on Desertification. 13-17 June 2000. Konya-Türkiye. s. 350-355.
  • Baath E. 1989. Effect of heavy metals in soil on microbial process and popullation: a review. WaterAir and Soil Pollution 47: 335-379.
  • Bargali K, Manral V, Padalia K, Bargali SS, Upadhyay VP. 2018. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171, 125-135. https://doi.org/10.1016/j.catena.2018.07.001.
  • Baum C, Linweber P, Schlichting A, 2003. Effects of chemical conditions in re-wetted peats temporal variation in microbial biomass and acid phosphatase activity within the growing season[J]. Appl Soil Ecol, 22: 167–174.
  • Bunt JS, Rovira AD. 1955. The effect of temperature and heat treatment on soil metabolism. Journal of Soil Science 6:129-136.
  • Burachevskaya M, Minkina T, Mandzhieva S, Bauer T, Nevidomskaya D, Shuvaeva V, Sushkova S, Kizilkaya R, Gülser C, Rajput V. 2021. Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environmental Geochemistry and Health. Apr;43:1655-72.
  • Burachevskaya M, Minkina T, Bauer T, Mandzhieva S, Gülser C, Kızılkaya R, Sushkova S, Rajput V. 2020. Assessment of extraction methods for studying the fractional composition of Cu and Zn in uncontaminated and contaminated soils. Eurasian Journal of Soil Science, 9(3), pp.231-241.
  • Chase FE, Gray PHH. 1957. Application of the Warburg respirometer in studying respiratory activity in soil. Canadian Journal Microbiology 3: 335-349.
  • Devi NB, Yadava PS. 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, northeast India. Appl. Soil Ecol. 31, 220–227.
  • Doelman P, Haanstra L. 1986. Short-term and long-term effects of heavy metals on urease activity in soils. Biol Fertil Soils 2:213–218.
  • Domsch KH. 1985. Funktionen und Belastbarkeit des Bodens aus de Sicht der Mikrobiologie. Materialien zur umweltforschung harausgegeebn wom Rat Von Sachverstandigen für Umweltfragen. Verlag W. Kahlhammer Stuttgart.
  • Eivazi F, Tabatabai MA. 1988. Glucosidases and galactosidases in soil. Soil Biology and Biochemistry 20: 601-606.
  • Elsokkary IH. 1979. The chemical fractionation of soil zinc and its specific and total adsorption by Egyptian alluvial soils. Plant and Soil, 53, 117-129.
  • Hinojosa MB, Ruiz RG, Vinegla B, Carreira JA. 2004. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcollar toxic spill. Soil Biol Biochem 32: 1637-1644. https://doi.org/10.1016/j.soilbio.2004.07.006.
  • Hoffmann GG, Teicher K. 1961. Ein Kolorimetrisches Verfahren zur Bestimmung der Urease Aktivitat in Böden. Zeitschrift für Pflanzenernahrung und Bodenkunde 91: 55-63.
  • Huang Q, Shindo H. 2000. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol Biochem 32:1885-1892.
  • Iqbal J, Ronggui H, Feng M, Lin S, Malghani S, Mohamed I. 2010. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 137 (3–4), 294–307.
  • Jones JB. 2001. Laboratory guide for conducting soil tests and plant analysis. Crc. doi: 10.1201/9781420025293. Kahkonen MA, Lankinen P, Hatakka A. 2008. Hydrolytic and lignolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi. Chemosphere 72: 708–714.
  • Karaca A, Cetin SC, Turgay OC, Kizilkaya R. 2010. Effects of heavy metals on soil enzyme activities. Soil heavy metals, 237-262.
  • Khan S, Cao Q, Hesham AEL, Xia Y, He J. 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J Environ Sci 19:834–840.
  • Kızılkaya R, Aşkın T, Bayraklı B, Sağlam M. 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40(2), 95-102.
  • Kick H, Buerger H, Sommer K. 1980. Total contents of lead, zinc, tin, arsenic, cadmium, mercury, copper, nickel, chromium and cobalt in agricultural and horticultural soils of Nordrhein-Westfalen, West Germany. Landwirtschaftliche Forschung, 33, 12-22.
  • Kizilkaya R. 2008. Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn. Bioresour Technol 99:946–953.
  • Korkmaz A, Kızılkaya R. 1998. Çevresel toprak sorunları ve gübrenin çevre kirliliğine katkısı. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi 13(1): 147-164.
  • Kunito T, Saeki K, Goto S, Hayashi H, Oyaizu H, Matsumoto S. 2001. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresour Technol 79: 135–146.
  • Malley C, Nair J, Ho G. 2006. Impact of heavy metals on enzymatic activity of substrate and composting worms Eisenia fetida . Bioresour Technol 97:1498–1502. Marine Research, 33, 566–575.https:// doi. org/10. 1007/ BF024 14780.
  • Minkina T, Konstantinova E, Bauer T, Mandzhieva S, Sushkova S, Chaplygin V, Burachevskaya M, Nazarenko O, Kizilkaya R, Gülser C, Maksimov A. 2021. Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environmental Geochemistry and Health, 43, pp.2285-2300.
  • Minkina TM, Pinskii DL, Zamulina IV, Nevidomskaya DG, Gülser C, Mandzhieva SS, Bauer TV, Morozov IV, Sushkova SN, Kizilkaya R. 2018. Chemical contamination in upper horizon of Haplic Chernozem as a transformation factor of its physicochemical properties. Journal of Soils and Sediments, 18, pp.2418-2430.
  • Moreno JL, Bastida F, Ros M, Hernández T, García C. 2009. Soil organic carbon buffers heavy metal contamination on semiarid soils: Effects of different metal threshold levels on soil microbial activity. European journal of soil biology, 45(3), 220-228.
  • Nannipieri P, Sequi P, Fusi P. 1996. Humus and enzyme activity. In Humic substances in terrestrial ecosystems (pp. 293-328). Elsevier Science BV.
  • Okur N, Çengel M. 1995. Bazı ağır metallerin alüviyal topraklarda biyomas (biyokütle) ve proteaz aktivitesi üzerine etkileri. Turkish Journal of Agriculture and Forestry 19: 341-247.
  • Oliveira A, Pampulha ME. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161.
  • Rowell DL. 1996. Soil Science: Methods and Applications. 3rd Edition Longman. London, UK.
  • Schloter M, Dilly O, Munch JC. 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98(1-3), 255-262.
  • Shang W, Wu X, Zhao L, Yue G, Zhao Y, Qiao Y, Li Y. 2016. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai–Tibet Plateau. Catena, 137, 670-678.https://doi.org/10.1016/j.catena.2015.07.012.
  • Singh AK, Jiang XJ, Yang B, Wu J, Rai A, Chen C, ... Singh N. 2020. Biological indicators affected by land use change, soil resource availability and seasonality in dry tropics. Ecological Indicators, 115, 106369. https://doi.org/10.1016/j.ecolind.2020.106369.
  • Song J, Shen Q, Wang L, Qiu G, Shi J, Xu J, ... Liu X. 2018. Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure. Environmental pollution, 243, 510-518. https://doi.org/10.1016/j.envpol.2018.09.011.
  • Stefanowicz AM, Kapusta P, Zubek S, Stanek M, Woch MW. 2020. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. https://doi.org/10.1016/j.chemosphere.2019.124922.
  • Stotzky G. 1956. Carbon and nitrogen transformations during decomposition of muck soil as affected by addition of rye tissue. Ph.D.Dissert., Ohio State Uni., Columbus, Ohio.
  • Sushkova S, Minkina T, Tarigholizadeh S, Antonenko E, Konstantinova E, Gülser C, Dudnikova T, Barbashev A, Kizilkaya R. 2020. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science, 9(3), pp.242-253.
  • Tabatabai MA. 1977. Effect of trace elements on urease activity in soils. Soil Biology and Biochemistry 8: 327-332.
  • Wyszkowska J, Kucharski J, Lajszner W. 2006. The effects of copper on soil biochemical properties and its interaction with other heavy metals. Polish Journal of Environmental Studies, 15(6).
  • Yurtsever N. 1984. Deneysel istatistik Metodları. Tarım, Orman ve Köyişleri Bakanlığı. Köy Hizmetleri Genel Müdürlüğü Yayınları, Ankara. s.623
  • Yüksel M, DenizO. 1996. Bafra ovası sağ sahil topraklarının sınıflandırılması. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi 2(2): 95-102.
  • Zhang Y, Zhang H, Su Z, Zhang C. 2008. Soil microbial characteristics under long-term heavy metal stres: a case study in Zhangshi wastewater ırrigation area, Shengyang. Pedosphere 18:1–10.
  • Zhang C, Nie S, Liang J, Zeng G, Wu H, Hua S, ... Xiang H. 2016. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment, 557, 785-790. https://doi.org/10.1016/j.scitotenv.2016.01.170.
  • Zhang FP, Li CF, Tong LG, Yue LX, Li P, Ciren YJ, Cao CG. 2010. Response of microbial characteristics to heavy metal pollution of mining soils incentral Tibet, China. Appl. Soil Ecol. 45, 144-151.