Ayçiçeği tarımı yapılan toprakların SMAF modeli ile toprak kalite indislerinin belirlenmesi: Tokat Zile İlçesi örneği

Toprak yönetimi uygulamalarının toprağın fonksiyonlarındaki değişimleri ortaya koymak ve değerlendirmek için kullanılan metotları geliştirmek ve genişletmek amacıyla birçok yaklaşımlar bulunmaktadır. Bunlardan birisi de SMAF (Toprak Amenajmanı Değerlendirme Çerçevesi) modelidir. Bu çalışmanın amacı, yarı kurak karasal ekosisteme sahip olan ve Tokat Zile Ovası içerisinde yer alan tarım arazilerinde, SMAF modeli kullanılarak ayçiçeği tarımı yapılan arazilerin fiziksel, kimyasal ve biyolojik toprak kalite indeks değerleri ile toplam toprak kalite özelliklerini belirlemektir. Bu amaçla, 1667 ha büyüklüğündeki araştırma alanını temsil eden 175 adet yüzey (0-30 cm) toprak örneklemesi yapılmıştır. SMAF modeli toprakların fiziksel, kimyasal ve biyolojik indikatörleri kapsamında; yarayışlı su içeriği, su dolu gözenek hacmi, hacim ağırlığı, agregat stabilitesi, toprak organik karbon içeriği, toprak pH’sı, elektriksel iletkenlik, sodyum adsorpsiyon oranı, bitkiye yarayışlı fosfor ve potasyum, azot içeriği, mikrobiyal biyokütle karbonu ve βeta-Glukosidaz enzim aktivitesi indikatörleri olmak üzere toplam 13 indikatör içermektedir. Elde edilen sonuçlara göre, çalışma alanı topraklarının ayçiçeği tarımı için kimyasal kalite indeksinin düşük sınıfta, biyolojik kalite indeksinin ise yüksek sınıfta olduğu belirlenmiştir. Ayrıca fiziksel toprak kalite orta ve toplam kalite indeks değerlerinin ise yüksek düzeyde oldukları belirlenmiştir. Fiziksel, kimyasal, biyolojik ve toplam toprak kalitesi endeksinin dağılımı, araştırma alanının güney bölümünde, çalışma alanının diğer bölümleriyle karşılaştırıldığında daha yüksek değer göstermektedir.

Determination of soil quality index for sunflower cultivated soils with SMAF model: A case study of Tokat Zile District

There are many approaches to improve and disseminate the methods used to identify and evaluate changes in soil functions of soil management practices. One of them is the SMAF (Soil Management Assessment Framework) model. The aim of this study to determine physical, chemical and biological soil quality index values and total soil quality characteristics of cultivated soils for sunflower in agricultural areas of Tokat-Zile Plain which has semi-arid terrestrial ecosystems by using SMAF (Soil Management Assessment Framework) model. For this purpose, 175 soil samples were collected from surface soil (0-30 cm) in the study area which covers about 1667 ha. SMAF model includes 13 indicators such as aggregate stability, available water content, water-filled pore volume, total organic carbon, pH, electrical conductivity, the sodium adsorption ratio (SAR), microbial biomass carbon, available phosphorus, βeta-Glukosidaz enzyme activity, total nitrogen and available potassium as physical, chemical and biological indicators. According to obtained results, it is determined that while the chemical quality index of the soils cultivated for sunflower was in the low class, biological quality of them was found in high quality class. In addition, physical and total soil quality indexes were found as moderate and high quality class. Distribution of physical, chemical, biological and total soil quality index show higher value in the sought part of the research area, when it is compared with the other parts of the study area.

___

  • Anderson J P E, Domsch K H. 1978. Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biology and Biochemistry, 10(3): 207-213.
  • Andrews S S, Karlen D L, Mitchell J P A. 2002a. Comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1), 25-45.
  • Andrews S S, Mitchell J P, Mancinelli R, Karlen D L, Hartz T K, Horwath W R, Pettygrove G S, Scow K M, Munk D S. 2002b. On‐farm assessment of soil quality in California's Central Valley. Agronomy Journal, 94(1): 12-23.
  • Andrews S S, Karlen D, Cambardella C A. 2004. The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America Journal, 68(6): 1945-1962.
  • Ben-Hur M, Shainberg I, Keren R, Gal M. 1985. Effect of Water Quality and Drying on Soil Crust Properties1, Soil Science Society of America Journal, 49 (1): 191-196.
  • Blake G R, Hartge K H. 1986. Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5: 377-382.
  • Bouyoucos G J A. 1951. Recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal, 43: 434-438.
  • Bremner J M. 1965. Total Nitrogen. Methods of Soil Analysis. (Editor: Black, C.A.) Part 2. Agronomy Series No: 9, 1179-1237.
  • Candemir F, Gülser C. 2010. Effects of different agricultural wastes on some soil quality indexes in clay and loamy sand fields. Communications in Soil Science and Plant Analysis, 42(1), pp.13-28.
  • Da Silva A P, Kay B. 1997. Effect of soil water content variation on the least limiting water range. Soil Science Society of America Journal. 61 (3): 884-888.
  • Dedeoğlu M, Başayiğit L, Yüksel M. 2019. Çok Kriterli Karar Verme Analizine Dayalı Tarımsal Amaçlı Arazi Kalite İndisi Uygulaması. Türkiye Tarımsal Araştırmalar Dergisi, 6(3): 295-307.
  • Dinel H, Mehuys G R, Levesque M. 1991. Influence of Humic Acid and Fibric Materials on the Aggregation and Aggregat Stability of a Lacustrine Siltly Clay. Soil Science, 2: 146-157.
  • Doğan B, Gülser C. 2019. Assessment of soil quality for vineyard fields: A case study in Menderes District of Izmir, Turkey. Eurasian journal of soil science, 8(2), pp.176-183.
  • Doğan B, Gülser C. 2020. Soil quality assessment for olive groves areas of Menderes District, Izmir-Turkey. Eurasian Journal of Soil Science, 9(4), pp.298-305.
  • Doran J W, Parkin T B. 1994. Defining and assessing soil quality. In: Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A. (Eds.), Defining Soil Quality for a Sustainable Environment. SSSA, Madison, WI, pp: 3–21.
  • Doran J W. 2002. Soil health and global sustainability: translating science into practice. Agriculture, ecosystems & environment, 88(2), 119-127.
  • Everest T, Sungur A, Özcan H. 2020. MEDALUS Yöntemi Kullanılarak Karacabey Tarım İşletmesi Toprak Kalite İndeksinin Değerlendirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1): 120-131.
  • Gupta S C, Dowdy R H, Larson W E. 1997. Hydraulic and Thermal Properties of A Sandy Soil as Influenced by Incorporation of Sewage Sludge. Soil Sci. Soc. Amer.J., 41:601- 605.
  • Gülser C, Kızılkaya R, Askın T, Ekberli I. 2015. Changes in soil quality by compost and hazelnut husk applications in a hazelnut orchard. Compost Science & Utilization, 23(3), pp.135-141.
  • Güneş A, İnal A, Alpaslan M. 1996. Effect of Salinty on Stomal Resistance, Proline, and Mineral Composition of Pepper. Journal of Plant Nutrition 19 (2): 389-396.
  • Jackson M L. 1962. Soil Chemical Analysis. Prentice Hall Inc. 183 p.
  • Kacar B. 2009. Toprak analizleri p. 467s. Ankara: Nobel Yayın Dağıtım.
  • Kalembasa D. 1996. Wpływ werminkompostów na plon i skład chemiczny owoców pomidora. Zeszyty Problemowe Postępów Nauk Rolniczych, 437.
  • Karlen D L, Tomer M D, Neppel J, Cambardella C A A. 2008. Preliminary watershed scale soil quality assessment in north central Iowa, USA. Soil and Tillage Research, 99(2): 291-299.
  • Kemper W D, Rosenau R C. 1986. Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 425-442.
  • Kızılkaya R, Heps̨en S. 2004. Effect of biosolid amendment on enzyme activities in earthworm (Lumbricus terrestris) casts. Journal of Plant Nutrition and Soil Science, 167(2), 202-208.
  • Koçyiğit R. 2008. Karasal ekosistemde karbon yönetimi ve önemi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, (1): 81-85.
  • Lewandowski A M, Zumwinkle M, Fish A. 1999. Assessing the soil system.
  • Nethra N N, Jayaprasad K V, Kale R D. 1999. China aster (Callistephus chinensis L.) cultivation using vermicomposts as organic amendment, Crop Res. Hisar. 17(2): 209-215.
  • Olsen S R, Cole C V, Deah L A. 1954. Estimation of available phosphorus in soil by extraction with NaHCO3. U.S. Dept. of Agr. Cic. 939.
  • Pacci S, Dengiz O, Saygın F, Alaboz P. 2022. SMAF Modeline Göre Çeltik Tarımı Yapılan Bafra Ovası Arazilerinin Toprak Kalite Özelliklerinin Değerlendirilmesi. Türkiye Tarımsal Araştırmalar Dergisi, 9(2), 164-174.
  • Pacci S, Kaya N S, Dengiz O, Turan İ D. 2021. Van Havzası İçerisinde Yer Alan Mera Arazilerinde SMAF Modeli Kullanılarak Toprak Kalitesinin Değerlendirilmesi. Anadolu Tarım Bilimleri Dergisi, 36(2), 301-316.
  • Parr J F, Papendick R I. 1997. Soil quality: relationships and strategies for sustainable dryland farming systems. Annals of Arid Zone, 36(3): 181-191.
  • Rhoades J D, Oster J D. 1986. Solute content. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 985-1006.
  • Soil Survey Staff. 1996. Soil survey laboratory methods manual. Soil Surv. Invest. Rep. 42. Version 3.0.
  • Tabatabai M A. 1994. Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5, 775-833.
  • Tang S, She D, Wang H. 2020. Effect of salinity on soil structure and soil hydraulic characteristics. Canadian Journal of Soil Science. 1–10.
  • TOVEP Türkiye Toprakları Verimlilik Envanteri. 1991. T.C. Tarım ve Orman Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü.
  • USDA-NRCS. 1996. Soil Quality Resource Concerns: Compaction. USDA-NRCS Soil Quality Inst., Ames, IA.
  • Wienhold B J, Karlen D L, Andrews S S, Stott D E. 2009. Protocol for indicator scoring in the soil management assessment framework (SMAF). Renewable agriculture and food systems, 24(4), 260-266.
  • Wilding L P. 1985. Spatial variability: its documentation, accomodation and implication to soil surveys. In Soil spatial variability, Las Vegas NV, 30 November-1 December 1984 pp. 166-194.